• Title/Summary/Keyword: similar materials

Search Result 4,776, Processing Time 0.038 seconds

Synnemata Production by Isaria tenuipes using Colored Cocoon Silkworm, Golden Silk

  • Hong, In-Pyo;Kang, Pil-Don;Kim, Kee-Young;Lee, Man-Young;Choi, Yong-Soo;Kim, Nam-Suk;Kim, Hye-Kyung;Nam, Sung-Hee;Lee, Kwang-Gill
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • This study was conducted to test the use of colored cocoon silkworm, Golden Silk, as a host for the fruiting body production of Cordyceps mushroom. Golden Silk variety had a shorter larval period than Yangwonjam at $25.3^{\circ}C$ and 78.5% RH: The average larval period of the Golden Silk was 24 days and 7 hr, and that of the Yangwonjam was 24 days and 15 hr. In the infection test of I. tenuipes on silkworm, the larval period of normal silkworms was longer than the silkworms inoculated with I. tenuipes in both Golden Silk and Yangwonjam. The pupae survival percentage of Golden Silk was 94.4%, whereas it was 91.9% in Yangwonjam. Golden Silk had a higher pupation rate than Yangwonjam. The pupation rate of normal silkworms was about 5% higher than that of silkworms inoculated with I. tenuipes. Infection rate of I. tenuipes into larvae of 5th instar newly exuviated silkworm was 93.8% in Golden Silk, and 96.9% in Yangwonjam. Synnemata production of I. tenuipes was better in Yangwonjam with an incidence rate of 99.8% than Golden Silk with 98.6%. The average synnemata weight of Golden Silk was 1.12 g and that of Yangwonjam 1.29 g. Golden Silk had a lower synnemata weight than Yangwonjam. But no significant difference was observed in synnemata weight varieties. The synnemata of I. tenuipes produced on pupae were white or milky-white in color, and similar in shape and color to wild synnemata collected in Korea.

SELECTED MECHANICAL PROPERTIES OF ORMOCER RESTORATIVE MATERIALS (Ormocer 계열 수복재의 물성에 관한 연구)

  • Lee, Dong-Soo;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.362-370
    • /
    • 2002
  • During the last two decades, many new filling materials and material groups have been developed. the number of available restoratives has increased dramatically, especially during the last 5 years. Ormocers are a new class of materials which are still under development with regard to dental applications. However, in the chemical literature these materials have been known for a long time and used for producing scratch resistant coatings on plastic spectacle lenses. It is a combination of inorganic and organic materials. 'Ormocer' is an abbreviation for 'Organically Modified Ceramics'. These compounds are also known in the literature as 'Ormosils' (organically modified silicates). Their chemistry is comparable to that of silicones and organic polymers. The purpose of this study was to determine of compressive strength and flexural strength of a ormocer (Admira) and to investigate the effects of water absorption in comparison with three composite resins(Z-100, Tetric Ceram, Surefil) and one compomer(Dyract AP). The following results were obtained ; 1. Admira had the lower compressive strength than Surefil, but no statistically difference with other materials at 1 day(p>0.05). 2. Admira had the lower flexural strength than all other materials at 1 day. From 2 days, Admits showed lower flexural strength than three composite resin(p<0.05). 3. There was not statistically significant difference of compressive and flexural strengths between hybrid composite resin group(Z-100, Tetric Ceram) and Packable resin group(Surefil) for experimental period(30 days)(p>0.05). 4. All five materials showed an increase in compressive and flexural strength till 2 days and showed a decrease from 7 days in water(p<0.05). 5. Each materials had the statistically similar behavior of compressive and flexural strengths over time(p>0.05).

  • PDF

Pressureless Sintered Nitride Composites in the AlN-Al2O3 System (AlN-Al2O3 계에서의 상압소결 질화물복합체)

  • Kim, Young Woo;Kim, Kyu Heon;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.498-504
    • /
    • 2014
  • Particulate nitride composites have been fabricated by sintering the compacted powder of AlN and 5 - 64.3 mol% $Al_2O_3$, with a small addition of $Y_2O_3$ ($Y_2O_3$/AlN, 1 wt%), in 1-atm nitrogen gas at $1650-1900^{\circ}C$. The composites were characterized in terms of sintering behavior, phase relations, microstructure and thermal shock resistance. AlN, 27R AlN pseudopolytype, and alminium oxynitride (AlON, $5AlN{\cdot}9Al_2O_3$) were found to existin the sintered material. Regardless of batch composition, the AlN-$Al_2O_3$ powder compacts exhibited similar sintering behavior; however, the degree of shrinkage commonly increased with increasing $Al_2O_3$ content, consequently giving high sintered bulk density. By increasing the $Al_2O_3$ addition up to ${\geq}50 mol%$, the matrix phase in the sintered material was converted from AlN or 27R to AlON. Above $1850^{\circ}C$, a liquid phase was formed by the reaction of $Al_2O_3$ with AlN, aided by $Y_2O_3$ and mainly existed at the grain boundaries of AlON. Thermal shock resistance was superior in the sintered composite consisting of AlON with dispersed AlN or AlN matrix phase.

Synthesis and Evaluation of Variable Temperature-Electrical Resistance Materials Coated on Metallic Bipolar Plates (온도 의존성 가변 저항 발열체로 표면 처리된 금속 분리판 제조 및 평가)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong Hyun;Ahn, Byung Ki;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • For the successful cold starting of a fuel cell engine, either internal of external heat supply must be made to overcome the formation of ice from water below the freezing point of water. In the present study, switchable vanadium oxide compounds as variable temperature-electrical resistance materials onto the surface of flat metallic bipolar plates have been prepared by a dip-coating technique via an aqueous sol-gel method. Subsequently, the chemical composition and micro-structure of the polycrystalline solid thin films were analyzed by X-ray diffraction, X-ray fluorescence spectroscopy, and field emission scanning electron microscopy. In addition, it was carefully measured electrical resistance hysteresis loop over a temperature range from $-20^{\circ}C$ to $80^{\circ}C$ using the four-point probe method. The experimental results revealed that the thin films was mainly composed of Karelianite $V_2O_3$ which acts as negative temperature coefficient materials. Also, it was found that thermal dissipation rate of the vanadium oxide thin films partially satisfy about 50% saving of the substantial amount of energy required for ice melting at $-20^{\circ}C$. Moreover, electrical resistances of the vanadium-based materials converge on an extremely small value similar to that of pure flat metallic bipolar plates at higher temperature, i.e. $T{\geq}40^{\circ}C$. As a consequence, experimental studies proved that it is possible to apply the variable temperature-electrical resistance material based on vanadium oxides for the cold starting enhancement of a fuel cell vehicle and minimize parasitic power loss and eliminate any necessity for external equipment for heat supply in freezing conditions.

  • PDF

Portland-Blended Cement with Reduced CO2 using Trass Pozzolan (화산회 가루를 사용함에 의한 CO2-저방출 포트랜드-혼합 시멘트 제조)

  • Manaf, A.;Indrawati, V.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.490-494
    • /
    • 2011
  • This paper reports the use of supplementary cementing materials (SCMs) derived from local resources, for the partial replacement of Portland cement to reduce $CO_2$ emission during cement production. Replacement of Portland clinkers up to 20 wt.% with SCMs in normal cements reduced $CO_2$ emission by 0.18 kg $CO_2$/kg. The compressive strength exceeded the standard specification for Portland cement ASTM C-150. Blended cement samples containing 20% Portland clinker replacement had compressive strengths of 37 MPa after 28 days of curing time. The microstructure evolution of blended cement at a composition of 80:20 was similar to that of the 100% Portland cement, where the structure between days 28 and 56 reached a steady state. Blended cements with compositions of 70:30 and 60:40 still showed progress of CSH plate formation and the lack of massive structure development. It is shown that the use of supplementary cementing materials could be as one of alternative ways to reduce $CO_2$ emissions during cement production.

Thermal Dissipation Property of Acrylic Composite Films Containing Graphite and Carbon Nanotube (흑연과 탄소나노튜브 함유 아크릴 복합체 박막의 방열 특성)

  • Kim, Junyeong;Kang, Chan Hyoung
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.198-205
    • /
    • 2017
  • Thermal dissipation was investigated for poly methyl methacrylate (PMMA) composite films containing graphite and multi wall carbon nanotube(CNT) powders as filler materials. After mixing PMMA with fillers, solvent, and dispersant, the pastes were prepared by passing through a three roll mill for three times. The prepared pastes were coated $15{\sim}40{\mu}m$ thick on a side of 0.4 mm thick aluminium alloy plate and dried for 30 min at $150^{\circ}C$ in an oven. The content of fillers in dried films was varied as 1, 2, and 5 weight % maintaining the ratio of graphite and CNT as 1:1. Raman spectra from three different samples exhibited D, G and 2D peaks, as commonly observed in graphite and multi wall CNT. Among those peaks, D peak was prominent, which manifested the presence of defects in carbon materials. Thermal emissivity values of three samples were measured as 0.916, 0.934, and 0.930 with increasing filler content, which were the highest ever reported for the similar composite films. The thermal conductivities of three films were measured as 0.461, 0.523, and $0.852W/m{\cdot}K$, respectively. After placing bare Al plate and film coated samples over an opening of a polystyrene box maintained for 1 h at $92^{\circ}C$, the temperatures inside and outside of the box were measured. Outside temperatures were lower by $5.4^{\circ}C$ in the case of film coated plates than the bare one, and inside temperatures of the former were lower by $3.6^{\circ}C$ than the latter. It can be interpreted that the PMMA composite film coated Al plates dissipate heat quicker than the bare Al plate.

The Effect of Surface-Modification of Wood Powders by Plasma Treatment of Propylene on the Mechanical Properties of Wood Powder/PP Composites (프로필렌의 플라즈마 처리로 개질된 목분이 복합재료의 기계적 특성에 미치는 영향)

  • Cho, Dong Lyun;Ha, Jong-Rok;Kim, Byung Sun;Yi, Jin Woo
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.145-148
    • /
    • 2017
  • Wood powders were surface-modified by plasma-treating propylene to make them compatible with PP matrix in WPC(wood powder composite). The plasma treatment of propylene resulted in the deposition of an ultrathin hydrophobic film which had the chemical structure similar to that of polypropylene. Wood powder and polypropylene were mixed to pellets by twin screw extruder and then 50 wt% wood powder/PP composites were produced by an injection machine. Tensile strength and flexural strength were improved by 7.59% and 12.43% at the maximum respectively. SEM (Scanning Electron Microscopy) observation on the fracture surface revealed that the treatment improved the interfacial bonding and the mechanical properties of the composites.

Effect of Cross Rolling on the Development of Textures in Tantalum (탄탈륨 집합조직 발달에 대한 교차압연의 영향)

  • Kang, Jun-Yun;Park, Seongwon;Park, Jun Young;Park, Seong-Jun;Song, Yi-Hwa;Park, Sung-Taek;Kim, Gwang-Lyeon;Oh, Kyeong-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.275-282
    • /
    • 2018
  • Two different modes of rolling were applied to control the texture development in tantalum sheet. In the conventional uni-directional rolling, the typical rolling textures of a body-centered cubic metal which was primarily composed of <110>//(rolling direction) was developed. In a cross rolling where the specimen was rotated by $90^{\circ}$ between each pass, the rotated cube components, i.e. {100}<011> were greatly reinforced. The prediction of lattice rotation by the full-constraint Taylor model showed that the high stability and the symmetry of the rotated cube components caused their strengthening in cross-rolling. The two specimens were heated to $1,100^{\circ}C$ at $9^{\circ}C/min$and held for 1 hour for annealing, then cooled to room temperature in atmosphere. In spite of the significant difference in the deformation textures, the annealing textures were very similar. They developed strong <111>//(plane normal) components with negligible intensity at the rotated cube components, which was attributed to the negligible capability of the latter components to provide effective recrystallized grains.

Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test (통계적 가설검정을 이용한 중심형 버터플라이 밸브의 신뢰성 평가)

  • Chang, Mu-Seong;Choi, Jong-Sik;Choi, Byung-Oh;Kim, Do-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1305-1311
    • /
    • 2015
  • A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and $B_{10}$ life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

A Study on Development of Model Materials Showing Similar Flow Characteristics of Hot Mild Steel at Various Temperatures (고온 연강 유동특성을 상사하는 모델재료 개발에 관한 연구)

  • 이종헌;김영호;배원병;이원화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1161-1171
    • /
    • 1993
  • Model materials are developed to achieve similarity of flow patterns for mild steels in forming processes at high temperatures. The model materials consist of pure plasticine and one or two additives such as resin and lanolin. To verify the similarity of flow patterns between physical modeling and compression of mild steels at high temperatures, ring and compression tests have been carried out with the developed-model materials at various strain rates, temperatures and lubricants. The test results are in good agreement with the flow patterns obtained from upsetting of a mild steel at high temperatures.