• Title/Summary/Keyword: similar materials

Search Result 4,776, Processing Time 0.033 seconds

Investigation of the Effect of kV Combinations on Image Quality for Virtual Monochromatic Imaging Using Dual-Energy CT: A Phantom Study

  • Jeon, Pil-Hyun;Chung, Heejun;Kim, Daehong
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Background: In this study, we investigate the image quality of virtual monochromatic images synthesized from dual-energy computed tomography (DECT) at voltages of 80/140 kV and 100/140 kV. Materials and Methods: Virtual monochromatic images of a phantom are synthesized from DECT scans from 40 to 70 keV in steps of 1 keV under the two combinations of tube voltages. The dose allocation of dual-energy (DE) scan is 50% for both low- and high-energy tubes. The virtual monochromatic images are compared to single-energy (SE) images at the same radiation dose. In the DE images, noise is reduced using the 100/140 kV scan at the optimal monochromatic energy. Virtual monochromatic images are reconstructed from 40 to 70 keV in 1-keV increments and analyzed using two quality indexes: noise and contrast-to-noise ratio (CNR). Results and Discussion: The DE scan mode with the 100/140 kV protocol achieved a better maximum CNR compared to the 80/140 kV protocol for various materials, except for adipose and brain. Image noise is reduced with the 100/140 kV protocol. The CNR values of DE with the 100/140 kV protocol is similar to or higher than that of SE at 120 kV at the same radiation dose. Furthermore, the maximum CNR with the 100/140 kV protocol is similar to or higher than that of the SE scan at 120 kV. Conclusion: It was found that the CNR achieved with the 100/140 kV protocol was better than that with the 80/140 kV protocol at optimal monochromatic energies. Virtual monochromatic imaging using the 100/140 kV protocol could be considered for application in breast, brain, lung, liver, and bone CT in accordance with the CNR results.

Effects of Solvent Viscosity on Conformational Dynamics of Heme-pocket in Myoglobin and Hemoglobin

  • Kim, Seong-Heun;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1825-1831
    • /
    • 2006
  • The influence of solvent viscosity on conformational dynamics of the heme-pocket, a small vacant site near the binding site of myoglobin (Mb) and hemoglobin (Hb), and playing a functionally important role by serving as a station in ligand binding and escape, was studied by probing time-resolved vibrational spectra of CO photodissociated from MbCO and HbCO in $D_2O$, 75 wt% glycerol/$D_2O$, and trehalose at 283 K. Two absorption bands ($B_1$ and $B_2$) of the sample in viscous solvents, arising from CO in the heme pocket, are very similar to those in $D_2O$. Two bands in Mb and Hb under all three solvents exhibit very similar nonexponential spectral evolution ($B_1$ band; blue shifting and broadening, $B_2$ band; narrowing with a negligible shifting), suggesting that in the present experimental time window of 100 ps, the extents of the spectral shift and narrowing is much influenced neither by the viscosity of solvent nor by the quaternary contact of Hb. Spectral evolution can be described by a biexponential function with a fast universal time constant of 0.52 ps and a slow time constant ranging from 13 to 32 ps. For both proteins in all three solvents majority of spectral evolution occurs with the fast universal time constant. The magnitude of the slow rate in the spectral shift of B1 band decreases with increasing solvent viscosity, indicating that it is influenced by global conformational change which is retarded in viscous solvent, thereby serve as a reporter of global conformational change of heme proteins after deligation.

Mechanical Properties Evaluation of Gas Tungsten Arc Welding for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 Gas Tungsten Arc Welding 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Moon, Il-Yoon;Rhee, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.692-698
    • /
    • 2009
  • Inconel 718 alloy has excellent mechanical properties at room temperature, high temperature and cryogenic conditions. UTS of base metal is about 900MPa at room temperature; this is increased up to 1300MPa after heat treatment & aging-hardening. Mechanical properties of Inconel 718 Alloy were similar to those shown in the the results for tensile test; mechanical properties of Inconel 718 alloy's GTAW were similar to those of base metal's properties at room temperature. Mechanical properties at cryogenic conditions were better than those at room temperature. Heat-treated Inconel 718, non- filler metal GTAW on Inconel 718 and GTAW used filler metal on Inconel 718's UTS was 1400MPa at cryogenic condition. As a result, the excellent mechanical properties of Inconel 718 alloy under cryogenic conditions was proved through tensile tests under cryogenic conditions. In addition, weldability of Inconel 718 alloy under cryogenic conditions was superior to that of its base-metal. In this case, UTS of hybrid joint (IS-G) at -100$^{\circ}C$ was 900MPa. Consequently, UTS of Inconel 718 alloy is estimated to increase from -100$^{\circ}C$ to a specific temperature below -100$^{\circ}C$. Therefore, Inconel 718 alloy is considered a pertinent material for the production of Lox Pipe under cryogenic conditions.

The polymerization efficiency of a bulk-fill composite based on matrix-modification technology

  • Elshazly, Tarek M.;Bourauel, Christoph;Aboushelib, Moustafa N.;Sherief, Dalia I.;El-Korashy, Dalia I.
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.32.1-32.12
    • /
    • 2020
  • Objectives: To evaluate the polymerization efficiency of a matrix-modified bulk-fill composite, and compare it to a conventional composite which has a similar filler system. The degree of conversion (DC%) and monomer elution were measured over different storage periods. Additionally, fillers' content was examined. Materials and Methods: Cylindrical specimens were prepared, in bulk and incrementally, from Filtek Bulk Fill (B) and Filtek Supreme XTE (S) composites using a Teflon mold, for each test (n = 6). Using attenuated total reflection method of Fourier transformation infrared spectroscopy, DC% was measured after 24 hours, 7 days, and 30 days. Using high-performance liquid chromatography, elution of hydroxyethyl methacrylate, triethylene glycol dimethacrylate, urethane dimethacrylate, and bisphenol-A glycidyl dimethacrylate was measured after 24 hours, 7 days and 30 days. Filler content was examined by scanning electron microscopy (SEM). Data were analyzed using 2-way mixed-model analysis of variance (α = 0.05). Results: There was no significant difference in DC% over different storage periods between B-bulk and S-incremental. Higher monomer elution was detected significantly from S than B. The elution quantity and rate varied significantly over storage periods and between different monomers. SEM images showed differences in fillers' sizes and agglomeration between both materials. Conclusions: Matrix-modified bulk-fill composites could be packed and cured in bulk with polymerization efficiency similar to conventional composites.

Study on the Physiological Activities of Cleyera japonica Extract (비쭈기 나무(Cleyera japonica) 추출물의 생리활성에 대한 연구)

  • Ahn, JoungJwa;Hwang, Tae-Young;Kim, Hyun-Soo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.153-157
    • /
    • 2015
  • In this study, we investigated the applicability of functional materials by examining a variety of physiological activities with the extract of Cleyera japonica leaf. Cleyera japonica extract showed a low cytotoxicity against murine melanoma B16F10 cells. In little or no cytotoxicity at concentrations, we showed that the treatment with Cleyera japonica extract resulted in a significant increase in the DPPH radical scavenging activity (IC50, 22.90 ㎎/L), similar to ascorbic acid (IC50, 18.65 ㎎/L) and anti-microbial activities against Bacillus subtilis, Escherichia coli, and Candida albicans. In particular, anti-microbial activities against Gram-positive bacteria was high. These results suggest that Cleyera japonica extract could be used as a natural preservative. Additionally, Cleyera japonica extract showed the inhibition of tyrosinase activity (IC50, 178.90 ㎎/L), similar to kojic acid (IC50, 89.13 ㎎/L) and decreased melanin content (IC50, 101.90 ㎎/L) higher than the control arbutin level (IC50, 100.65 ㎎/L), especially. Therefore, these results indicate that Cleyera japonica extract may be an effective material for functional cosmetics such as skin whitening materials.

A Study on the Analysis of Radiation Dose for Thermoplastic Material and 3D Print Filament Materials (열가소성 플라스틱 재질과 3D 프린트 필라멘트 재질에 대한 방사선량 분석에 관한 연구)

  • Lee, Dong-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.181-189
    • /
    • 2021
  • This study is a prior research to manufacture a thermoplastic mask, which is a fixture used in radiation therapy, by 3D printing. It proceeded to analyze the filament material that can replace the thermoplastic. Among the commercially available filament materials, a material having similar characteristics to that of a thermoplastic mask was selected and the radiation dose was compared and analyzed. The experiment used Monte Carlo simulation. The shape in which the mask fixed the head was simulated for the ICRU sphere. The photon fluence was calculated at the skin Hp (0.07), the lens Hp (3), and the whole body Hp (10) by applying a thermoplastic plastic material and a filament material. As a result, when looking at the relative dose based on the thermoplastic plastic material, the difference was approximated within 4%. The material showing the most similar dose was PA-nylon. In selecting an appropriate filament material, it should be selected by comprehensively considering various conditions such as economical efficiency and radiation effects. It is thought that the results of this study can be used as basic data.

Particle Filtration Efficiency Testing of Sterilization Wrap Masks

  • Chau, Destiny F.;O'Shaughnessy, Patrick;Schmitz, Michael L.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.1
    • /
    • pp.31-36
    • /
    • 2021
  • Objectives: Non-traditional materials are used for mask construction to address personal protective equipment shortages during the coronavirus disease 2019 (COVID-19) pandemic. Reusable masks made from surgical sterilization wrap represent such an innovative approach with social media frequently referring to them as "N95 alternatives." This material was tested for particle filtration efficiency and breathability to clarify what role they might have in infection prevention and control. Methods: A heavyweight, double layer sterilization wrap was tested when new and after 2, 4, 6, and 10 autoclave sterilizing cycles and compared with an approved N95 respirator and a surgical mask via testing procedures using a sodium chloride aerosol for N95 efficiency testing similar to 42 CFR 84.181. Pressure testing to indicate breathability was also conducted. Results: The particle filtration efficiency for the sterilization wrap ranged between 58% to 66%, with similar performance when new and after sterilizing cycles. The N95 respirator and surgical mask performed at 95% and 68% respectively. Pressure drops for the sterilization wrap, N95 and surgical mask were 10.4 mmH2O, 5.9 mmH2O, and 5.1 mmH2O, respectively, well below the National Institute for Occupational Safety and Health limits of 35 mmH2O during initial inhalation and 25 mmH2O during initial exhalation. Conclusions: The sterilization wrap's particle filtration efficiency is much lower than a N95 respirator, but falls within the range of a surgical mask, with acceptable breathability. Performance testing of non-traditional mask materials is crucial to determine potential protection efficacy and for correcting misinterpretation propagated through popular media.

Consideration on the Regulated Quantity of Preparation for Accidents by Risk Assessment (위험도 평가를 통한 사고대비물질별 규정수량 고찰)

  • Ahn, Gwangjae;Kim, Jungwook;Lee, Keunwon;Jung, Seungho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.506-511
    • /
    • 2022
  • In the Chemicals Control Act, a system was implemented to unify off-site risk assessment and risk management plan into the prevention and management system for chemical accidents. Among the hazardous chemicals which have been covered in system, the accident preparation substances are designated as chemical substances that are likely to occur and of which damage scale are likely to be large in the event of chemical accidents. In this study, risks were compared by selecting accident preparation substances with similar regulated quantities. In addition, risk assessment studies were conducted applying the accident scenarios. Four types of materials such as ammonia, hydrogen chloride, carbon disulfide and benzene were selected for the study, and risks were finally analyzed using Safeti 8.0, a quantitative risk assessment program by DNV. As a result, some materials are identified to have high risks comparing to other substances having similar regulated quantities.

The Physico-Chemical Characteristics of Modified Starch Made by Chemical Treatment (화학적 처리방법에 의한 변성전분의 이화학적 특성)

  • Song, Eun-Seung;Woo, Na-Ri-Yah
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.1
    • /
    • pp.91-96
    • /
    • 2007
  • Developing carbohydrate fat replacer as materials for low-calorie and low-fat food made of Korean potato, it is expected that the new demand of fat replacer will be created. Potato starch was modified by chemical modification. Observing modified starch(treated in different method) by SEM, EZ(treated by enzyme) showed shape of deformed round oval, AC(treated by acetylation,), HPR(treated by hydropropylation) showed shape similar to that of NL(N-Lite), the commercial fat replacer. In the modified starch such as AC, peak in B and C type similar to those of general starch was found, but EZ showed non-crystalline shape. Compared to other modified starch, HPR, the chemically produced denatured starch showed very peculiar peak and structure in V-form. While the order of contents of amylopectin was in the order HPR > EZ > AC showed extremely high contents. Measuring the degree of gelatinization per the modified method, the degree of gelatinization of HPR as much higher than others. The water binding activity of modified starch was 240% in HPR. Measuring viscosity by producing general starch and modified starch as gel of 10% concentration, the CPS showed very high viscosity of 30.30 ${\times}$ 10$^3$ cp. Showing viscosity of 38.60, 31.60 10$^3$ ${\times}$ cp, the modified starch was in the order of HPR. While the calorie of starch of GPS was measured to be 3.0 Kcal/g, very low calorie those of chemically modified starch, HPR showed 2.5 Kcal/g respectively, suggesting that calorie is decreased by modified treatment. The appropriateness of processing food was experimented by substituting the existing oil and fat containing food with saturated gel of starch and modified starch in constant rate through utilization of modified starch. Therefore, research and development for materials and related products which maintain the existing quality and reduce fat contents will be constantly performed in the future.

Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness (몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석)

  • Seung Jun Moon;Jae Kyung Kim;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF