• Title/Summary/Keyword: similar materials

Search Result 4,776, Processing Time 0.033 seconds

Polyethylene-Based Dielectric Composites Containing Polyhedral Oligomeric SilSesquioxanes Obtained by Ball Milling

  • Guo, Meng;Frehchette, Michel;David, Eric;Demarquette, Nicole Raymonde
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.53-61
    • /
    • 2015
  • High-energy ball milling was tested as a method for producing Ultra High Molecular Weight Polyethylene (UHMWPE)- based nanodielectrics containing 1 wt% and 5 wt% OctaIsoButylPOSS (OibPOSS). Qualitative and quantitative evaluations were used to explore the compatibility between OibPOSS and PE. Several ball milling variables were optimized in a bid to achieve UHMWPE/OibPOSS nanodielectrics. The morphology, as well as the thermal and the dielectric properties of the samples, were characterized by scanning electron microscopy, thermogravimetric analysis, broadband dielectric spectroscopy, and progressive-stress breakdown tests. The results showed that (i) ball milling was an effective method for producing UHMWPE/OibPOSS dielectric composites, but appeared ineffective in dispersing OibPOSS at the nanoscale, and (ii) the resulting UHMWPE/OibPOSS dielectric composites presented thermal and dielectric properties similar to those of neat UHMWPE.

A Study on Physical Properties Of Co3O4-added Ni- Zn Ferrite at High Frequency (Co3O4첨가에 따른 고주파용 Ni-Zn계 ferrite의 물리적 특성 연구)

  • Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.791-795
    • /
    • 2002
  • We studied the physical properties of $Co_3$$O_4$-added Ni-Zn ferrite which were sintered at 1050~110$0^{\circ}C$ for 2 hours. X-ray diffraction showed a spinel structure, and optical microscopy showed grain sizes of 5 to 10 $\mu\textrm{m}$. As the sintering temperature was increased from $1050^{\circ}C$ to $1070^{\circ}C$, the initial permeability and magnetic induction increased, and both of the loss factor and the coercive force decreased. The Curie temperatures were about $^234~245{\circ}C$ with added $Co_3$$O_4$. The initial permeability was 350 to 420 and maximum magnetic induction density and coercive force 4870G to 4980G and 0.15 Oe to 0.21 Oe, respectively which were similar to those of Ni-Zn ferrite synthesized in the conventional process. The frequency of specimen was in the range of 1MHz to 300MHz. In the plot of initial permeability vs. frequencies, a $180^{\circ}C$ rotation of the magnetic domain could be perceived in a broad band of microwave before and after the resonance frequency.

Experimental Study on Effect of Electrode Material and Thickness in a Dielectric Barrier Discharge Plasma Actuator Performance (전극 재료 및 두께가 DBD 플라즈마 액추에이터의 성능에 미치는 영향에 대한 실험적 연구)

  • Lee, Seung-Yeob;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2012
  • Plasma actuator makes parallel flow on the wall surface by the interaction between plasma and neutral air particles. Dielectric barrier discharge (DBD) plasma actuator is widely studied as one type of plasma actuators, which consists of one electrode exposed to the environmental gas and the other encapsulated by a dielectric material. This paper is experimentally focused on the performance of DBD plasma actuator mounted on a flat plate, which depends on kinds of the electrode materials, their thicknesses and the supplied voltage including its frequency. We measured the velocity magnitudes of the induced flow by a stagnation probe as a performance parameter of the plasma actuators. The velocity profiles of the flow induced by the plasma actuators are similar in all measurement cases. The magnitude of the induced velocity is strongly influenced by the thickness of the electrodes and the frequency of the input voltage. The performance of DBD plasma actuators is related to the electric properties of the electrode materials such as the ionization energy and the electrical resistivity.

Effect of PVA Polymerization on Synthesis of YAG:Ce3+ Phosphor Powders Prepared by a Solid-liquid Hybrid Route (PVA 중합도가 고상-액상 혼합 방식에 의한 YAG:Ce3+ 형광체 분말 합성에 미치는 영향)

  • Kim, A-Reum;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.424-429
    • /
    • 2014
  • YAG:$Ce^{3+}$ phosphor powders were synthesized using $Al(OH)_3$ seeds by means of a PVA-polymer-solution route. Various types of PVA with different molecular weights (different polymerization) were used. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1500^{\circ}C$ in a mix of nitrogen and hydrogen gases. The final powders were characterized via XRD, SEM, PSA, PL, and PKG analyses. The phosphor properties and morphologies of the synthesized powders were dependent on the PVA type. As the molecular weight of the PVA was increased, the particle size gradually decreased with agglomeration, and the luminous intensity of the phosphor increased. However, the phosphor powder prepared from the PVA exhibiting very high molecular weight, showed a 531 nm (blue) shift from the 541 nm (yellow) wavelength of the YAG:$Ce^{3+}$ phosphor. Finally, the synthesized YAG:$Ce^{3+}$ phosphor powder prepared from the PVA with 89,000 - 98,000 molecular weight showed phosphor properties similar to those of a commercial phosphor powder, but without a post-treatment process.

Methods for Improving the Applicability of Wood Powder Spacers to Liner Board Manufacturing (산업용지 제조에서 목질계 스페이서의 적용성 개선방안)

  • Yoon, Do-Hyun;Sung, Yong Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.160-167
    • /
    • 2015
  • The reduction of energy consumption in papermaking process has been considered as one of the major issue in the paper technology. The energy efficiency of paper mill becomes more significant for the mill which manufacture the board grade products such as linerboard with recycled paper such as OCC. The application of lignocellulose spacer to the board grade paper stock would be the feasible solution by increasing the paper bulk and the drying efficiency. The major defects originated from the application of the lignocellulose spacer could be the loss of strength properties. In this study, the ways for improving the strength properties of the spacer-added linerboard were suggested and evaluated. The effects of the addition of various types polyelectrolytes were tested and the different methods of polyelectrolytes were applied for finding the efficient way. The pretreatments of lignocellulose spacer with the polyelectrolytes during wood spacer hydration resulted in the higher strength properties than the typical application method such as the addition to the mixed stock. Multilayer treatments of the spacer with polyelectrolytes were also evaluated and leaded to the higher strength properties with the similar bulk improvement.

Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC

  • Pham, Hoa D.;Khuc, Tung;Nguyen, Tuan V.;Cu, Hung V.;Le, Danh B.;Trinh, Thanh P.
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • Ultra-high-performance concrete (UHPC) is recognized as a promising material in future civil engineering projects due to its outstanding mechanical and durability properties. However, the lack of local UHPC materials and official standards, especially for prestressed UHPC structures, has limited the application of UHPC. In this research, a large-scale prestressed bridge girder composed of nonproprietary UHPC is produced and investigated. This work has two objectives to develop the mixing procedure required to create UHPC in large batches and to study the flexural behavior of the prestressed girder. The results demonstrate that a sizeable batch of UHPC can be produced by using a conventional concrete mixing system at any precast factory. In addition, incorporating local aggregates and using conventional mixing systems enables regional widespread use. The flexural behavior of a girder made by this UHPC is investigated including flexural strength, cracking pattern and development, load-deflection curve, and strain and neutral axis behaviors through a comprehensive bending test. The experimental data is similar to the theoretical results from analytical methods based on several standards and recommendations of UHPC design.

The single crystal growth of various colored cubic zirconia for jewelry (다양한 색의 보석용 큐빅 지르코니아 단결정 성장)

  • Nam, Kyung-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.272-276
    • /
    • 2007
  • The various colored cubic zirconia single crystals for jewelry were grown by skull melting method of excellent productivity. The cubic zirconia is similar to the character of diamond, which has high refractive index, large dispersion and high hardness. It is possible that the development of new colored cubic zirconia by doping 3d-transition elements or 4f-rare earth elements. The colored cubic zirconia is representative of synthetic gemstone which was grown up by mixing one or over two materials among $Pr_6O_{11},\;TiO_2,\;MnO_2\;and\;Er_2O_3$ as coloring agent. Subsequent heat treatment improves the quality of color and uniformity. This study is aimed the color reappearance of cubic zirconia such as natural peridot, smoky-quartz and red-tourmaline.

Structural response of rectangular composite columns under vertical and lateral loads

  • Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.287-298
    • /
    • 2017
  • The present study aims to determine the structural response of full scaled rectangular columns under both of vertical and lateral loads using numerical methods. In the study, the composite columns considering full concrete filled circular steel tube (FCFRST) and concrete filled double-skin rectangular steel tube (CFDSRST) section types are numerically modelled using ANSYS software. Vertical and lateral loads are applied to models to assess the structural response of the composite elements. Also similar investigations are done for reinforced concrete rectangular (RCR) columns to compare the results with those of composite elements. The analyses of the systems are statically performed for both linear and nonlinear materials. In linear static analyses, both of vertical and lateral loads are applied to models as only one step. However in nonlinear analyses, while vertical loads are applied to model as only one step, lateral loads are applied to systems as step by step. The displacement and stress changes in some critical nodes and sections and contour diagrams are reported by graphs and figures. At the end of the study, it is demonstrated that the nonlinear models reveal more accurate result then those of linear models. Also, it is highlighted that composite columns provide more and more safety, ductility compared to reinforced concrete column.

Evaluation of the grouting in the sandy ground using bio injection material

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.739-752
    • /
    • 2017
  • This study was intended to evaluate the improved strength of the ground by applying the bio grouting method to a loose sandy ground. The injection material was prepared in the form of cement-like powder, with the bio injection material produced by microbial reactions. The grouting test was conducted under the conditions similar to the field where the bio injection material can be applied. In addition, the injection materials (cement and sodium silicate No. 3) used for Labile Waterglass (LW) method and the conventional grouting methodwere prepared through a two-solution one-step process. The injection into the specimens was done at a pressure of 150 kPa and then, with a bender element, their moduliof elasticity were measured on the 7th, 14th, 21st and 28th curingdays to analyze their strengths according to the duration of curing. It was confirmed that in all injection materials the moduli of elasticity increased over time. In particular, when 30% of the bio injection material was added to 100% cement, the modulus of elasticity tended to increase by about 15%. This confirmed that the applicability became higher when the bio injection material was used in place of the conventional sodium silicate.

Determination of bearing type effect on elastomeric bearing selection with SREI-CAD

  • Atmaca, Barbaros;Ates, Sevket
    • Advances in Computational Design
    • /
    • v.2 no.1
    • /
    • pp.43-56
    • /
    • 2017
  • The aim of this paper is to develop software for designing of steel reinforced elastomeric isolator (SREI) according to American Association for State Highway and Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) Specifications. SREI is used for almost all bridge types and special structures. SREI-structures interface defines support boundary conditions and may affect the seismic performance of bridges. Seismic performance of the bridge is also affected by geometrical and materials properties of SREI. The selection of SREI is complicated process includes satisfying all the design constraints arising from code provisions and maximizing performance at the lowest possible cost. In this paper, design stage of SREI is described up to AASHTO LRFD 2012. Up to AASHTO LRFD 2012 analysis and design program of SREI performed different geometrical and material properties are created with C# object-oriented language. SREI-CAD, name of the created software, allows an accurate design for economical estimation of a SREI in a short time. To determine types of SREI effects, two different types of bearings, rectangular and circular with similar materials and dimension properties are selected as an application. Designs of these SREIs are completed with SREI-CAD. It is seen that ensuring the stability of circular elastomer bearing at the service limit state is generally complicated than rectangular bearing.