• Title/Summary/Keyword: similar material

Search Result 3,185, Processing Time 0.026 seconds

Preparation and Analysis of High Functional Silicone Hydrogel Lens Containing Metal Oxide Nanoparticles by Photopolymerizaion

  • Heo, Ji-Won;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.193-199
    • /
    • 2022
  • In this study, lenses are fabricated using various nanomaterials as additives to a silicone polymer made with an optimum mixing ratio and short polymerization time. In addition, PVP is added at a ratio of 1 % to investigate the physical properties according to the degree of dispersion, and the compatibility with hydrophobic silicone and the possibility of application as a functional lens material are confirmed. The main materials are SIU as a silicone monomer, DMA, a hydrophilic copolymer, EGDMA as a crosslinking agent, and 2H2M as a photoinitiator. Holmium (III) oxide, Europium (III) oxide, aluminum oxide, and PVP are used. When Holmium (III) oxide and Europium (III) oxide are added based on the Ref sample, the characteristics of the lens tend to be similar overall, and the aluminum oxide shows a tendency slightly different from the previous two oxides. This material can be used as a silicone lens material with various nano oxides and polyvinylpyrrolidone (PVP) acting as a dispersant.

Limitations of Structural Behavior Response Performance Evaluation for Waterproofing Materials Under Non-Constrained Conditions and Suggestions for Future Improvement Measures (방수재료의 거동대응성능 시험시 비 구속조건에서의 구조물 거동 대응성능 평가의 한계와 향후 개선 방안 제안)

  • An, Ki-Won;Oh, Gyu-Hwan;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.212-213
    • /
    • 2021
  • As structure and the waterproofing material are compressed through the backfilling process after the waterproofing material is installed on the underground structure at the actual site, there is a difference between the behavioral response force of the waterproofing material in the compressed state and the behavioral response force in the non-constrained state. In this regard, we will analyze the limitations of the current structural behavioral response evaluation and suggest an improvement plan so that the future test and evaluation environment can be evaluated under conditions similar to the field.

  • PDF

Evaluation of the grouting in the sandy ground using bio injection material

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.739-752
    • /
    • 2017
  • This study was intended to evaluate the improved strength of the ground by applying the bio grouting method to a loose sandy ground. The injection material was prepared in the form of cement-like powder, with the bio injection material produced by microbial reactions. The grouting test was conducted under the conditions similar to the field where the bio injection material can be applied. In addition, the injection materials (cement and sodium silicate No. 3) used for Labile Waterglass (LW) method and the conventional grouting methodwere prepared through a two-solution one-step process. The injection into the specimens was done at a pressure of 150 kPa and then, with a bender element, their moduliof elasticity were measured on the 7th, 14th, 21st and 28th curingdays to analyze their strengths according to the duration of curing. It was confirmed that in all injection materials the moduli of elasticity increased over time. In particular, when 30% of the bio injection material was added to 100% cement, the modulus of elasticity tended to increase by about 15%. This confirmed that the applicability became higher when the bio injection material was used in place of the conventional sodium silicate.

Adsorption Kinetic and Isotherm Characteristics of Mn Ions with Zeolitic Materials Synthesized from Industrial Solid Waste (산업폐기물로부터 합성된 제올라이트 물질의 망간 이온 흡착속도 및 등온흡착 특성)

  • Choi, Jeong-Hak;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.827-835
    • /
    • 2020
  • Zeolite material having XRD peaks of Na-A zeolite in the 2θ range of 7.18 to 34.18 can be synthesized from the waste catalyst using a fusion/hydrothermal method. The adsorption rate of Mn ions by a commercial Na-A zeolite and the synthesized zeolitic material increased as the adsorption temperature increased in the range of 10 ~ 40℃. The adsorption of Mn ion were very rapid in the first 30 min and then reached to the equilibrium state after approximately 60 min. The adsorption kinetics of Mn ions by the commercial Na-A zeolite and the zeolitic material were found to be well fitted to the pseudo-2nd order kinetic model. Equilibrium data by the commercial Na-A zeolite and the zeolitic material fit the Langmuir, Koble-Corrigan, and Redlich-Peterson isotherm models well rather than Freundlich isotherm model. The removal capacity of the Mn ions by the commercial Na-A zeolite and the zeolitic material obtained from the Langmuir model was 135.2 mg/g and 128.9 mg/g at 30℃, respectively. The adsorption capacity of Mn ions by the synthesized zeolitic material was almost similar to that of commercial Na-A zeolite. The synthesized zeolitic material could be applied as an economically feasible commercial adsorbent.

Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing

  • Rahmani, Hamidreza;Panah, Ali Komak
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2020
  • The long-term behavior of rockfill material used in the construction of infrastructures such as dams is of great significance. Because of concerns about the application of weak rockfill material in dam construction, further experimental studies on the behavior of these materials are required. In this study, laboratory experiments were performed to investigate the one-dimensional deformation and particle breakage of the weak rockfill material under stress. A one-dimensional compression apparatus was designed and developed for testing of rockfill materials of different maximum particle sizes (MPSs). The compression tests were performed under dry, wet and saturated conditions on samples of rockfill material obtained from a dam construction site in Iran. The results of the experiments conducted at the specimen preparation stage and the 1D compression tests are presented. In weak rockfill, the effect of the addition of water on the behavior of the material was uncertain as there were both an increases and decreases observed in particle breakage. Increasing the MPS of the weak rockfill materials increased particle breakage, which was similar to the behavior of strong rockfill material. In all of the MPSs examined, the settlement of specimens under wet conditions was higher than that observed under dry conditions. Also, the greatest deformation occurred during the first hour of loading.

Comparative Analysis on Characteristics of Extrusion and Drawing for Monel Material of Special Alloy with Rectangular Bar in Elastic Limit (특수합금 사각봉 모넬 소재의 탄성영역 압출 및 인발 특성 비교 해석)

  • Young-Joon Yang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.573-580
    • /
    • 2024
  • Recently, the special alloy, for instance, such as Monel and Inconel, is used for valves, bolt/nuts, and fittings in semiconductor facility, FCEV(fuel cell electric vehicle) and hydrogen gas station, to reduce the hydrogen embrittlement. Even though the Monel material has high cost, it is recommended to use for the cases of ultra high pressure, ultra high leak-proof and so on. The purpose of this study is to investigate the characteristics of Monel material within elastic limit through the comparative analysis when Monel material is extruded or drawn. As the results, the deformation of Monel material was increased as the number of pass was increased, further, the deformation of Monel material by drawing was larger than that by extrusion. In the safety factor, the case that load is less than 420kN, the plastic deformation due to drawing could be happened faster than that due to extrusion. However, the case of more than 420kN, it showed that the plastic deformation for extrusion and drawing was almost similar.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

Combination Dyeing of Silk Fabrics with Dansam and Sappan Wood (단삼과 소목을 이용한 견직물의 복합염색)

  • Nam, Jeongran;Lee, Jeongsook
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.314-326
    • /
    • 2013
  • The purpose of this research is to analyze the effects of Dansam and Sappan wood extract to perform combination dyeing on silk fabrics, with respect to color changes, fastness (washing, dry cleaning, perspiration, rubbing and light fastness), and functionality (antibacterial activity and deodorization). Combination dyeing was performed by first combining Dansam with Sappan wood, then Sappan wood with Dansam, in these orders. Given the changes in the combination ratio, pre-mordant treatment was performed. Looking at the surface colors of each dye, Dansam generally produces YR color series, while Sappan wood produces YR, R, and RP color series. The effects of changing the order in which combination dying was performed on the surface colors were as follows. First, combination dyeing (A) was performed by using Dansam before Sappan wood, to produce YR and R color series. Then combination dyeing (B) was performed by using Sappan wood before Dansam, to produce YR, R, and RP color series. By visual inspections, more similar color changes of the combination dyeing were noticed with the post-dyeing material rather than the pre-dyeing material. Therefore, it was presumably confirmed that surface color changes of combination dyeing were greatly influenced by the post-dyeing color. Individual dyeing tests for fastness showed that Dansam was comparatively superior to Sappan wood, which demonstrated lower fastness to washing, dry cleaning, perspiration, and light, relatively. The fastness of combination dyed samples was shown middle, but similar fastness to the post-dye material, The fastness of (B) method was higher than (A) method in the washing and light fastness. This confirms that color fastness from combination dyeing was considerably influenced by the post-dye material. It was found that all dyed samples had a very high bacterial reduction rate of 99.9% and high deodorization rate of 95%.

Examination on Application of High-Performance Concrete using Fine Fly Ash as Replacement Material of Silica Fume (고성능콘크리트의 제조에 사용되는 실리카 흄의 대체재로써 고분말 플라이애시의 적용성 검토)

  • Lee, Bum-Sik;Kim, Sang-Kyu;Kim, Sang-Youn;Choi, Sun-Mi;Lee, Gun-Su
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.502-509
    • /
    • 2007
  • This paper investigated how Fine Fly Ash (FFA) with $14,000\;cm^2/g$ of Fineness affects the micro structure and material properties of High-Performance Concrete (HPC) before and after hardening from Material Test of HPC and Cement Paste. FFA is applied as a substitute of Silica Fume which is used necessarily in producing HPC. As a Material Test results, 5% FFA series specimen shows the lower fluidity than SF series specimen. When, however, the Fluidity of 10% FFA series specimen is increased reversely to the similar value of SF series specimen. The Porosity of FFA series specimen of 3 day age is displayed to $21{\sim}24%$, which is higher than $19{\sim}20%$ porosity of SF series specimen, while that of 28 day age is reached to $8{\sim}9%$, which is improved compared with 10% fo SF series specimen. It can be thought that FFA has better influence on the porosity of HPC in case of long term age. The Compressive strength of FFA series specimen shows the similar result with the property of porosity. The compressive strength of 28 day age FFA series specimen is $98{\sim}106%$ of SF series specimen and 107% of plain specimen to reveal better strength development.

The Brake Performance of Sintered Friction Materials Developed for High Speed Trains (고속전철용 소결 복합재의 마찰 특성평가)

  • Chung, So-La;Hong, Ui-Seok;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.266-271
    • /
    • 2007
  • The brake performance of sintered friction materials for the high speed train was studied. In this study, newly developed sintered materials based on copper were compared with the commercial products for high speed trains. They were tested on a 1/5 scale dynamometer using low carbon steel disks. Effectiveness, fade, and recovery tests were carried out to examine friction performance and the change of disk thickness variation (DTV) during brake applications and noise propensity were also evaluated. Results showed that the two sintered friction materials exhibit similar friction coefficients and braking performance, whereas the newly developed friction material was superior in terms of DTV generation and noise propensity to the commercial friction material. The improvement of the newly developed friction material was attributed to the high graphite content which reduced the stick-slip phenomena and prevented uneven disk wear by producing friction films on the counter disk.