• Title/Summary/Keyword: similar material

Search Result 3,185, Processing Time 0.034 seconds

Daesoon Jinrihoe in Perspective: New Religions and their Development over Time

  • FRISK, Liselotte
    • Journal of Daesoon Thought and the Religions of East Asia
    • /
    • v.1 no.1
    • /
    • pp.61-79
    • /
    • 2021
  • In this study, Daesoon Jinrihoe is compared with five international new religious movements (The Church of Scientology, The Family International, The Hare Krishna Movement, The Family Federation, and the Osho Movement) concerning the development of charisma and institutionalization, as well as organizational changes and relationship to society. The material consists of previous research about Daesoon Jinrihoe and two interviews with representatives for the group. In many respects the development of Daesoon Jinrihoe has similarities to the international groups. Since its inception, it has changed from a group with charismatic authority to a rational-legal authority, through a development of organizational complexity, initiated by the three consecutive charismatic leaders. Today there is no charismatic leader, but a president who has an administrative function. Similar to several of the international groups, there have been charismatic challenges in Daesoon Jinrihoe on several occasions. Differences to the international groups are mainly related to macrosociological factors in the shape of the occupation of Japan. Daesoon Jinrihoe was against the occupation, but in spite of that worked to keep the tensions with society low, even though the organization at times was forbidden. In the international groups, the tensions to society were generally high, and had different reasons. In several of the international groups the final arrival of children influenced organizational changes: this was not the case with Daesoon Jinrihoe as there had always been children in the group. As in the Church of Scientology, the children are not much engaged in the religious life of Daesoon Jinrihoe, but can join as adults. Today, Daesoon Jinrihoe works as a denomination, with a positive relationship to society partly due to many welfare projects.

A Study on the Characteristics of Silicon Nanopowders Produced by Transferred Type Arc Plasma Apparatus (이송식 아크플라즈마 장치에 의해 제조된 실리콘 나노분말의 특성에 대한 연구)

  • Kan, Woo-Seop;Park, Sang-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.909-917
    • /
    • 2021
  • This study was carried out experimentally on the production and properties of silicon nanopowders characteristics using a transferred type arc plasma apparatus. To investigate the properties of silicon nanopowder, the purity of argon gas(99.999%, 99.9%) and the partial pressure ratio of nitrogen gas(0~90%) were varied. The total pressure in chamber is 400Torr and the silicon chunk amount used as raw material is 300g. The power supplied to the cathode to generate arc plasma was 9~12kW/h, and the electrode was made of tungsten and graphite with a diameter of 13mm. The particle size, impurity elements and powder evaporation rate of the silicon powder were analyzed using the XRD, FE-SEM, TEM and electronic scale. According to the purity of argon gas, the silicon evaporation rate and the particle size were similar, and impurities were generated more in the case of 99.9% purity than 99.999%. When argon gas and nitrogen gas were mixed in the chamber, the silicon evaporation rate and particle size increased as the partial pressure ratio of nitrogen gas increased. In particular, when the partial pressure ratio of nitrogen gas was 80%, the silicon evaporation rate 80g/h, and the particle size was about 80~100nm.

A Study on Selective Transfer and Reflow Process of Micro-LED using Micro Stamp (마이크로 스탬프를 이용한 Micro-LED 개별 전사 및리플로우 공정에 관한 연구)

  • Han, Seung;Yoon, Min-Ah;Kim, Chan;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2022
  • Micro-light emitting diode (micro-LED) displays offer numerous advantages such as high brightness, fast response, and low power consumption. Hence, they are spotlighted as the next-generation display. However, defective LEDs may be created due to non-uniform contact loads or LED alignment errors. Therefore, a repair process involving the replacement of defective LEDs with favorable ones is necessitated. The general repair process involves the removal of defective micro-LEDs, interconnection material transfer, as well as new micro-LED transfer and bonding. However, micro-LEDs are difficult to repair since their size decreases to a few tens of micron in width and less than 10 ㎛ in thickness. The conventional nozzle-type dispenser for fluxes and the conventional vacuum chuck for LEDs are not applicable to the micro-LED repair process. In this study, transfer conditions are determined using a micro stamp for repairing micro-LEDs. Results show that the aging time should be set to within 60 min, based on measuring the aging time of the flux. Additionally, the micro-LEDs are subjected to a compression test, and the result shows that they should be transferred under 18.4 MPa. Finally, the I-V curves of micro-LEDs processed by the laser and hot plate reflows are measured to compare the electrical properties of the micro-LEDs based on the reflow methods. It was confirmed that the micro-LEDs processed by the laser reflow show similar electrical performance with that processed by the hot plate reflow. The results can provide guidance for the repair of micro-LEDs using micro stamps.

Implant-supported fixed prosthetic restoration using a high performance polymer (PEKK) in a mandibular unilateral resection: A case report (하악골 편측 절제 환자에서 High Performance Polymer (PEKK)를 이용한 임플란트 지지형 고정성 보철 수복 증례)

  • Kong, Dae-Ryong;Min, Gyeong-Won;Jang, Ki-Yeol;Lee, Gyeong-Je;Lee, Sun-Haeng
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.254-262
    • /
    • 2022
  • When treating partial edentulous patients, it is important to use an appropriate restorative materials. Inappropriate restorative materials can adversely affect the outcome of prosthetic restorations. Zirconia and dental metal, which are currently and widely used materials, have a higher elastic modulus than cortical bone, so when an external force is generated, a harmful force can be applied to the implant and the bone around the implant. Polyetherketoneketone (PEKK), a recently introduced material, has a elastic modulus similar to that of cortical bone, and has many advantages in terms of physical properties and biocompatibility. This case report describes that implant-supported fixed prosthetic treatment using PEKK was performed, and functional and esthetic satisfactory results were obtained.

Research on the Development of Artificial Organs based on the Physical Properties of the Human Body (인체의 물리적 성질을 이용한 인공장기 개발 연구)

  • Lee, SeungBock
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.670-675
    • /
    • 2022
  • In the era of the 4th industrial revolution, everything is data-centric. The type and amount of data may be central, and new data may be required in special circumstances. As 3D printers are used in various fields, there are fields that are newly challenged. In particular, in the medical field, new attempts that have not been considered before are taking place. This paper is a study to enable research in fields that require physical properties of the human body. In the meantime, research using human organs has mainly used the materials made of silicon. We measure the physical properties of the human body from cadavers, apply these characteristics to develop new materials, and develop artificial organs with 3D printers. Using the artificial organs made in this way, you can practice surgery with a robot that removes kidney stones. In this paper, we would like to introduce a series of research processes to develop advanced materials similar to human organs.

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.

A study on antioxidative components and activity of fermented Cirsium Lineare (Thunb.) extract

  • Lee, Sung-Gyu;Hwang, Jin-Woo;Lee, Dong-Sup;Kang, Sangmoon;Joun, Yong-Seung;Kang, Hyun
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.250-256
    • /
    • 2022
  • This study was conducted to measure changes in polyphenol components and antioxidant effects of Cirsium Lineare (Thunb.) after fermentation by lactic acid bacteria. First, Cirsium Lineare (Thunb.) extract (CE, unfermented) and Cirsium Lineare (Thunb.) extract fermented with Lactobacillus paracasei (FCE) were prepared. Changes in components resulting from fermentation were confirmed through changes in polyphenol compound content and silymarin derivative pattern, and antioxidant activity was confirmed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, and ferric reducing antioxidant power (FRAP) analyses. As a result, polyphenol contents of CE and FCE were confirmed as 21.94 ± 1.15 and 67.90 ± 4.48 mg GAE/g, respectively. Both values were increased approximately three times by fermentation, and there was also a change in the silymarin derivative pattern. In the case of DPPH radical RC50 values in particular, CE and FCE were confirmed to inhibit DPPH radicals by 50% at concentrations of 129.44 ± 5.85 and 50.00 ± 3.47 ㎍/mL, respectively, with the FCE value approximately 2.5 times lower than that of CE. In addition, ABTS radical scavenging and FRAP activity were confirmed to share similar trends as DPPH radical scavenging activity. When CE and FCE were compared, FCE showed a better antioxidant effect overall. In conclusion, this study suggested that FCE prepared through lactic acid bacteria fermentation may be utilized as a powerful antioxidant material.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Investigation of the Influence of Radius and Corner Position on the Residual Stress Distribution in the Vicinity of the Repaired Region via Directed Energy Deposition by using Finite Element Analysis (유한 요소 해석을 이용한 DED 공정의 코너 반경 및 위치에 따른 보수 영역 부근 잔류응력 분포 영향성 조사)

  • Alissultan, Aliyev;Lee, Kwang-Kyu;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.33-40
    • /
    • 2021
  • Current industrial flow is directed toward reducing the usage of raw materials by reusing parts, which is referred to as a circular economy (CE). Repair is one of the most value-added approaches in CE, which can be efficiently accomplished via additive manufacturing. The repair technology of metallic parts via the directed energy deposition process, which includes the selective removal and redeposition of damaged regions of metallic parts. Residual stress characteristics depend on the shape of the part and the shape of the redeposition region. The objective of this study is to investigate the effects of the radius and corner position of the substrate on the residual stresses for repair by using finite element analysis (FEA). The residual stress distribution of the 45° angle groove at the edge of the circular shape models on the outer and inner radii was analytically investigated. The analysis was accomplished using SYSWELD software by applying a moving heat source with defined material properties and cooling conditions integrated into the FEA model. The results showed a similar pattern of concentrated stress distribution for all models except the 40-mm and 60-mm radii, for which the maximum stress locations were different. The maximum residual stresses are high but lower than the yield strength, suggesting the absence of cracks and fractures due to residual stresses.

Analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS using the Serpent Monte Carlo code and the ENDF/B-VIII.0 nuclear data library

  • Hartanto, Donny;Liem, Peng Hong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2725-2732
    • /
    • 2020
  • This paper presents the neutronics benchmark analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS (Reaktor Serba Guna G.A. Siwabessy) calculated by the Serpent Monte Carlo code and the newly released ENDF/B-VIII.0 nuclear data library. RSG-GAS is a 30 MWth pool-type material testing research reactor loaded with plate-type low-enriched uranium fuel using light water as a coolant and moderator and beryllium as a reflector. Two groups of critical benchmark problems are derived on the basis of the criticality and control rod calibration experiments of the first core of RSG-GAS. The calculated results, such as the neutron effective multiplication factor (k) value and the control rod worth are compared with the experimental data. Moreover, additional calculated results, including the neutron spectra in the core, fission rate distribution, burnup calculation, sensitivity coefficients, and kinetics parameters of the first core will be compared with the previous nuclear data libraries (interlibrary comparison) such as ENDF/B-VII.1 and JENDL-4.0. The C/E values of ENDF/B-VIII.0 tend to be slightly higher compared with other nuclear data libraries. Furthermore, the neutron reaction cross-sections of 16O, 9Be, 235U, 238U, and S(𝛼,𝛽) of 1H in H2O from ENDF/B-VIII.0 have substantial updates; hence, the k sensitivities against these cross-section changes are relatively higher than other isotopes in RSG-GAS. Other important neutronics parameters such as kinetics parameters, control rod worth, and fission rate distribution are similar and consistent among the nuclear data libraries.