• Title/Summary/Keyword: silyl hydride

Search Result 2, Processing Time 0.019 seconds

Effects of the Variation of Silyl Hydride-to-Vinyl Ratios in Dental Polyvinylsiloxane Impression Materials (실리콘 폴리머의 비닐그룹에 대한 가교제의 Si-H 비율이 폴리비닐실록산 치과용 인상재의 물성에 미치는 영향)

  • Ju, Dong-Hyun;Jeong, Young-Hwa;Song, Ho-Jun;Choi, Chang-Nam;Park, Yeong-Joon
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.150-155
    • /
    • 2009
  • This study examined the effects of the concentration variation of the silyl hydride (Si-H) functional group in polymethylhydrogen siloxane cross-linker and the vinyl-functional group in silicone prepolymer on the physical properties of the dental polyvinylsiloxane impression materials (PVS). When the SiH/Vinyl ratio was 1.6 (Group $\underline{C6}$ containing ${\underline{C}}ross$-linker $\underline{6}$ parts), the setting rate was too slow even though their tensile strength was the highest within the tested groups. When the SiH/Vinyl ratio was 3.2 (Group C12), the setting rate was too fast to allow appropriate working time even though their mechanical properties were good. The C14 group showed rather lower tensile strength compared to the groups having lower cross-linker contents. Notably, too much incorporation of cross-linker, like C16 group, induced delay of the setting, by which the mechanical and manipulation properties were detrimentally affected.

Effects of Silicone Polymer Blends on Physical Properties of Dental Polyvinylsiloxane Impression Materials (실리콘폴리머의 혼합사용이 폴리비닐실록산 치과용 인상재의 물성에 미치는 영향)

  • Lim, Chang-Ha;Kim, Min-Kang;Kim, Young-Chul;Park, Nam-Cook;Song, Ho-Jun;Park, Yeong-Joon
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.76-83
    • /
    • 2009
  • The purpose of this study was to investigate the effects of combined use of several types of silicone polymers on the physical properties of the dental polyvinylsiloxane impression materials (PVS). Four types of silicone prepolymers having different molecular weight and vinyl group position, and two types of cross-linkers having differently located silyl hydride functional groups were used in various combinations for the formulation. The samples containing bimodal or trimodal prepolymers showed higher tensile strength, elongation at break, and elastic deformation than those containing only one type of prepolymer. The samples using CR210 cross-linker which has side- and terminal-silyl hydride groups showed higher elastic deformation and elongation at break than those using CR101 cross-liker which has side-only silyl hydride group. High vinyl content prepolymer having side vinyl group delayed setting even though it enhanced tensile strength. Further studies are needed to clarify the specific role of this component on setting time and to find appropriate controlling methods for making improved PVS with optimum workability.