• Title/Summary/Keyword: silver solution

Search Result 416, Processing Time 0.027 seconds

Studies on Carrier-Free Silver-111 with Membrane Filters (막여과지에 의한 무단체 Ag-111에 관한 연구)

  • Jae, Won-Mok
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.319-323
    • /
    • 1973
  • The state of carrier-free silver-111 has been studied by applying filtration method. The studies involved that the effects of pH and concentration of silver-111 in aqueous solution have been determined with membrane filters. The present studies revealed that the retainment of silver-111 on membrane filters followed Freundlish adsorption isotherm, and the adsorbed state of silver-111 was present in the form of AgOH. Also it was supposed that the formation of the non-adsorbed hydroxide of$Ag(OH)_{2}-$ may prohibit the existance of AgOH at higher pH, and it seems to be valid that the carrier-free silver-111 in aqueous solution exists in$Ag^+$state.

  • PDF

Study on the reaction crystallization of silver chloride in Rushton type semi-batch reactor (Rushton type 반회분식 반응기에서 염화은 반응성 결정화에 관한 연구)

  • 이종석;김우식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.609-619
    • /
    • 1996
  • Experimental study on effects of factors on the reaction crystallization of silver chloride in rushton type reactor. The size and size distributions of the silver chloride crystals were observed to be markedly affected by the agitation speed of solution, and feeding rate, feeding mode and concentration of reactants. From experimental data it was inferred that in the reaction crystallization of silver chloride the supersaturation level of silver chloride and concentration of excess ions in the solution, and mass transfer rate around the crystals were implicitly interrelated with factors and directly affected on the crystal nucleation and grwoth processes. However, the morphology of the silver chloride crystal was not changed by factors.

  • PDF

Formation of Carboxymethyl Cellulose Hydrogel Containing Silver Nanoparticle (은 나노입자를 함유하는 카르복시메틸 셀룰로오스 하이드로겔 제조)

  • Park, Jong-Seok;Kuang, Jia;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.353-357
    • /
    • 2010
  • Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using $AgNO_3$ aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

A Concept of Silver Robot and It's Feasibility Study (실버로보트의 개념 설계 및 그 실현가능성에 관한 연구)

  • 양순용;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1279-1280
    • /
    • 1997
  • The proportion of the aged people is rapidly increasing toward the 21st century. This change will cause serious problems in the area of daily activities, preservation of health, medical care and physical rehabilitatiion for the aged. for the solution of these problems this paper suggest a new type of robot for the aged man, called a silver robot. This paper presents a concept of silver robot and it's feasibility study.

  • PDF

The Leaching of Gold-silver from Refractory Gold Concentrate by Chlorine-hypochlorite Solution (염소-차아염소산 용액에 의한 저항성 금 정광으로부터 Gold-silver 용출)

  • Cho, Kang-Hee;Kim, Bong-Ju;Oh, Su-Ji;Choi, Seoung-Hwan;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.123-130
    • /
    • 2012
  • Leaching experiments of gold and silver from roasted concentrate were carried out using a chlorine-hypochlorite solution. The leaching rate of gold was 75% at 1.5:1 ratio of chlorine and hypochlorite and increased to 81% with adding 1 M NaCl. However, at 1% pulp density and at $65^{\circ}C$, the leaching rates of Au were close to 100%. XRD analysis identified quartz in the solid residues after digestion of roasted concentrate with aqua regia or chlorine-hypochloride leaching solution. This suggests that the gold may not be leached out of the quartz in aqua regia or chlorine-hypochlorite solution. In order to leach the gold from the quartz, the concentrate will have to be pre-treated through ultra-fine grinding or treated with stronger oxidative agents.

Preparation of Ag Fine Particles from Aqueous Silver Solution by Reduction Reaction (Ag 水溶液으로부터 還元反應에 의한 Ag 微粒子의 製造 硏究)

  • Lee, Hwa-Young;Jin, Seon-Ah;Han, Young-Ju
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.26-32
    • /
    • 2005
  • A study on the preparation of Ag fine particles was performed through a reduction reaction using ascorbic acids as a reductant, which is one of the indispensable processes for the recycling of silver-bearing wastes. Silver nitrate solution in the range of 10~120 mmole/l was used and Tamol NN8906 or PVP was also used as a dispersant in the preparation of Ag fine particles size analyze, SEM, and TEM to determine the particle size and morphology of them. As a result, the reduction reaction of silver ions with ascorbic acid reached equilibrium within 10 min. It was found that about 60% excess of ascorbic acid was required in order to reduce completely silver ions in the solution. The particle size distribution of Ag particles prepared through the reduction reaction showed typically biomodal or trimodal distribution. Especially, initial Ag concentration in the solution, the type and amount of dispersant added during the reduction reaction played an important role in determining the mean particle size of Ag particles.

Preparation and Characterization of Alginate-Chitosan Microsphere for Controlled Delivery of Silver Sulfadiazine (설파디아진은의 방출제어를 위한 알지네이트-키토산 미립구의 제조 및 특성)

  • Cho, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.101-106
    • /
    • 2001
  • Alginate-chitosan (anion-cationic polymeric complex) was prepared to control the release rate of silver sulfadiazine (AgSD). Na-alginate (2%) solution containing AgSD was gelled in $CaCl_2$ solution. The gel beads formed were immediately encapsulated with chitosan (CS). The gel matrix and membrane were then reinforced with chondroitin-6-sulfate (Ch6S). Release rate of AgSD from the gel matrix was investigated by placing alginate beads in the sac of cellulose membrane simmered in HEPES-buffer solution. The concentration of AgSD released was analyzed by UV at 264 nm. Incorporation capacity of AgSD in Ca-alginate gel was more than 90%. Alginate-Ch6S-CS could control the release rate of AgSD. The amount of AgSD release was dependent on the AgSD loading dose. Incorporation of tripolyphosphate (polyanionic crosslinker) onto the alginate-Ch6S-CS bead increased the release rate of AgSD. Collagen-coating had no influence on the AgSD release rate. Alginate-Ch6S-CS beads with a sufficiently high AgSD encapsulation were capable of controlling the release of the drug over 10 days. In summary, alginate-Ch6S-CS beads could be used as a sustained delivery for AgSD and provide local targeting with low silver toxicity and patient discomfort.

  • PDF

The Stability of Citrate-capped Silver Nanoparticles in Isotonic Glycerol Solution for Intravenous Injection (글리세롤을 이용한 구연산캡핑 은나노입자의 정맥주사용 현탁액 조제 및 안정성)

  • Lee, Yeon-Jin;Park, Kwang-Sik
    • YAKHAK HOEJI
    • /
    • v.56 no.2
    • /
    • pp.74-79
    • /
    • 2012
  • Citrate-capped silver nanoparticles (AgNPs) are widely used in industry, consumer products and medical appliances. However, information on the toxicity, environmental fate and toxicokinetics are not enough. In this study, stability of citrate-capped AgNPs was investigated using different types of isotonic solution, which is important in the toxicokinetic study by the exposure route of intravenous injection. Size, morphology, zeta potential and ion formation were investigated in isotonic solutions for the physico-chemical characterization of AgNPs. Aggregation and precipitation of AgNPs were observed in saline or phosphate-buffered saline while they were stable without precipitation in 2% glycerol of isotonic solution. The average size of AgNPs in 2% glycerol was 6~10 nm, which was almost same as that in water-based suspension of AgNPs. Zeta potential was ranged from -30 mV to -60 mV, which was in the range of original stock AgNPs. The stability was maintained during the whole experimental period of 48 hours. Furthermore, the stability was not changed in different temperature (10~36$^{\circ}C$) and at different concentrations (10~1,000 ppm). The osmolarity of the AgNPs suspension was $299{\pm}1$ mOsm/kg which was in isotonic range. These data suggest that AgNPs in 2% glycerol solution can be used for the preparations of intravenous injection for toxicokinetic study without undesired disturbance of blood isotonicity.

Preparation of Ag-impregnated Porous Ceramic Beads and Antibacterial Properties (Ag 담지 다공성 세라믹 비드 제조 및 항균 특성)

  • Seo, Won-Hak;Han, Yo-Seop;Jeong, Young;Park, Jai-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.549-554
    • /
    • 2005
  • Porous ceramic beads that had skeleton structure were impregnated with Ag from silver nitrate solution. Ag-impregnated porous ceramic beads were performed to evaluate the antibacterial properties on Escherichia coli and Staphylococcus aureus, also, compared with commercial silver-activated carbon on antibacterial activity. As concentration of silver nitrate solution increased, deposited-Ag contents of outer and inner surface of beads were increased. The size of silver particles supported on porous ceramic bead were range of $0.5{\sim}2.0\;{\mu}m$. The observed effects of the prepared Ag-impregnated beads on antibacterial activity are as follows : i) Antibacterial activity should be directly proportional to silver nitrate solution and reaction time. ii) The antibacterial activity against Escherichia coli was better than that against Staphylococcus aureus.

A New Composition of Nanosized Silica-Silver for Control of Various Plant Diseases

  • Park Hae-Jun;Kim Sung-Ho;Kim Hwa-Jung;Choi Seong-Ho
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.295-302
    • /
    • 2006
  • The present study addressed the efficacy of nanosized silica-silver for controlling plant pathogenic microorganisms. The nanosized silica-silver consisted of nano-silver combined with silica molecules and water soluble polymer, prepared by exposing a solution including silver salt, silicate and water soluble polymer to radioactive rays. The nanosized silica-silver showed antifungal activity against the tested phytopathogenic fungi at 3.0 ppm with varied degrees. In contrast, a number of beneficial bacteria or plant pathogenic bacteria were not significantly affected at 10 ppm level but completely inhibited by 100 ppm of nanosized silicasilver. Among the tested plant pathogenic fungi, the new product effectively controlled powdery mildews of pumpkin at 0.3 ppm in both field and greenhouse tests. The pathogens disappeared from the infected leaves 3 days after spray and the plants remained healthy thereafter. Our results suggested that the product developed in this study was effective in controlling various plant fungal diseases.