• Title/Summary/Keyword: silver solution

Search Result 416, Processing Time 0.022 seconds

Effect of Continuous Oil Phase on Preparation of Silver Halide Nanoparticles using AOT-Based W/O Microemulsions (AOT W/O 마이크로에멀젼을 이용한 할로겐화은 나노입자 제조에서 연속상 오일의 영향)

  • Jung, KilYong;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.364-371
    • /
    • 2007
  • Effects of continuous oil phase on silver halide nanoparticles were investigated where nanoparticles were prepared using two different types of water-in-oil(W/O) microemulsions containing silver and halide, respectively. Phase behavior experiments for ternary systems containing AOT surfactant, hydrocarbon oil and aqueous solution of an inorganic salt showed that the region of one phase W/O microemulsion was found to be broadened with an increase in the alkyl chain length of a hydrocarbon mainly due to an increase in hydrophilic nature of a surfactant. With the information of phase behavior experiments, silver halide nanoparticles were prepared using different AOT-based microemulsion systems and photomicrographs obtained by transmission electron microscopy indicated that about 10 nm size particles of relatively spherical shape were obtained. It has been found that an increase in alkyl chain length of a hydrocarbon results in a decrease in particle size because of higher intermicellar exchange rate among microemulsion drops. The average particle size was also found to increase with the inorganic salt composition of initial aqueous solution.

Preparation of Silver Nanoparticles on the Poly(vinyl alcohol)/poly(ethylene glycol) Hydrogel (Poly(vinyl alcohol)/poly(ethylene glycol) 하이드로겔에서의 silver nanoparticles의 제조)

  • Park, Jong-Seok;Kim, Hyun-A;Choi, Jong-Bae;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.119-124
    • /
    • 2011
  • Silver nano-particles (AgNPs) have attracted much attention for centuries due to their unique optical properties, electrical conductivities, oxidative catalysis, and antibacterial effect. In this study, AgNPs have been prepared by using aqueous $AgNO_3$ solution in the poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels. PVA and PEG powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make hydrogels. PVA/PEG hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. FE-SEM is used to observe the formation of AgNPs as a function of the content of PEG and the irradiation dose. Also, AgNPs in the PVA/PEG hydrogels were monitored by UV-Vis. It is observed that the content of PEG and gamma-ray irradiation in the hydrogel is crucial to the formation of AgNPs. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

  • Kasraei, Shahin;Sami, Lida;Hendi, Sareh;AliKhani, Mohammad-Yousef;Rezaei-Soufi, Loghman;Khamverdi, Zahra
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.109-114
    • /
    • 2014
  • Objectives: Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods: Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30). The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683) and Lactobacillus (PTCC 1643) were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at $37^{\circ}C$ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results: Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05). The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05). There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions: Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

Preparation of Silver/Polystyrene Beads via in Sito Reduction of Silver Alkylcarbamate Complex (은 알킬카바메이트 복합체의 환원에 의한 은/폴리스티렌 비드의 제조)

  • Lim, Tae-Ho;Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • Monodisperse polystyrene and its copolymer beads containing amine function were prepared for the electroless silver plating using reduction of silver alkylcarbamate complex in organic solvent. Soap-free emulsion polymerization was adopted for the polymerization of styrene, divinylbenzene (DVB), and 2-(N,N-dimethylamino) ethyl methacrylate (DAEMA) in the presence of poly (vinyl alcohol) in a water/methanol solvent. The resulting poly (styrene/DVB/DAEMA), containing 30/0$\sim$1.5/0$\sim$3 wt% in monomer composition, were found to be a sphere-type particle with diameter of 1 ${\mu}m$. Silver Ag-coated polystyrene beads were prepared by in sito reduction of a silver 2-ethylhexylcarbamate (Ag-EHCB) complex solution with hydrazine without pretreatment of polystyrene beads. Robust Ag/polystyrene beads were analyzed by SEM, UV -visible spectrometer and XRD.

Antibacterial Effect of Colloidal Silver on Some Oral Bacteria (콜로이드상 은이 수종의 구강 세균에 미치는 항균 효과)

  • Kang, Kee-Hyun;Lee, Kyong-Eun
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The maintenance of good oral health in adults is often hindered by oral malodor and periodontal diseases which are known to be commonly caused by some species of Gram-negative anaerobic bacteria, with low sensitivity to common synthetic antibiotics or antibacterial chemical agents. Therefore the development of a nonharmful natural antibacterial oral rinsing remedy against the causative bacteria is thought to be very important. The purpose of this study is to obtain the basic data for development of a nonharmful natural antibacterial oral rinsing remedy using colloidal silver. The author applied colloidal silver solution with concentration of 10, 30, 50, 80 ppm to some strains in species of Prevotella intermedia, Porphyromonas gingivalis, Fusobaterium nucleatum, and evaluated the effects of colloidal silver on the growth of experimental bacterial strains in aspects of minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and growth pattern after incubation for 24, 48, 72 hours. The obtained results were as follows: MIC of colloidal silver solution against experimental strains was 30 ppm in P. intermedia, 10 or 30 ppm in P. gingivalis, and 30, 50, or 80 ppm in F. nucleatum. And MBC of colloidal silver solution against experimental strains was 30 ppm in P. intermedia, 30 or 50 ppm in P. gingivalis, 30 or 80 ppm in F. nucleatum. Therefore it was concluded that colloidal silver exhibited bacteriostatic or/and bacteriocidal effects against some experimental strain. And the inhibition of growth of experimental strains were markedly or considerably exhibited under 30 ppm$\sim$50 ppm of colloidal silver solution for 48 hours$\sim$72 hours in P. intermedia, 10 ppm$\sim$30 ppm for 24 hours$\sim$48 hours in P. gingivalis, 30 ppm for 24 hours in F. nucleatum. These results indicate that the colloidal silver inhibited effectively the growth of some species of Gram-negative anaerobic bacteria by exhibition of bacteriostatic or/and bacteriocidal effects, and can be used as a possible major ingredient of the nonharmful natural antibacterial oral rinsing remedy to oral malodor and periodontal diseases.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Production of Silver Impregnated Bamboo Activated Carbon and Reactivity with NO Gases (은첨착 대나무 활성탄의 제조와 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong;Lee, Geun-Lim
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.807-813
    • /
    • 2014
  • The Ag-impregnated activated carbon was produced from bamboo activated carbon by soaking method of silver nitrate solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. Soaking conditions are the variation of silver nitrate solution concentration (0.002~0.1 mol/L) and soaking time (maximum 24 h). The specific surface area and pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of used activated carbon. Carbon-NO reactions were carried out with respect to reaction temperature ($20{\sim}850^{\circ}C$) and NO gas partial pressure (0.1~1.8 kPa). As results, Ag amounts are saturated within 2h, Ag amounts increased 1.95 mg Ag/g (0.2%)~ 88.70 mg Ag/g (8.87%) with the concentration of silver nitrate solution in the range of 0.002~0.1 mol/L. The specific volume and surface area of bamboo activated carbon of impregnated with 0.2% silver were maximum, but decreased with increasing Ag amounts of activated carbon due to pore blocking. In NO reaction, the reaction rate of impregnated bamboo activated carbon was retarded as compare with that of bamboo activated carbon. Measured reaction orders of NO concentration and activation energy were 0.63[BA], 0.69l[BA(Ag)] and 80.5 kJ/mol[BA], 66.4 kJ/mol[BA(Ag)], respectively.

Silver Up-Take by Modified Pitches

  • Manocha, Satish M.;Patel, Mitesh
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 2002
  • The modification of coal-tar pitch has been carried out by heat treatment of pitch at different temperatures in the range ($300^{\circ}-400^{\circ}C$) for different times (2-5 hrs) in air and nitrogen. The pitch heat treated in air at lower temperature ($300^{\circ}C$) exhibit increase in softening point by $20^{\circ}C$ as compared to only $2^{\circ}C$ when treated in nitrogen. The changes are faster in air than in pure nitrogen. Pitch as such as well as after heat treatment were further treated with metal complexes by solution route. Silver intake has been found to increase from 0.5 to 0.8 % in nitrogen treated pitch while the uptake is found to decrease for pitches treated in air at $350^{\circ}C$ for 5 hrs. Experiments have also been made to incorporate silver into PAN and PAN-ox fibers through solution route. The metal intake has been found to be more in PAN-ox fibers than in PAN as such. Metal loaded carbon composites have been made by using metal loaded fibers as well as cokes. These composites as such exhibit higher surface oxygen complexes but decrease after activation.

  • PDF

Surface-Enhanced Raman Scattering and DFT Study of 4,4'-Biphenyldithiol on Silver Surface

  • Lee, Yu Ran;Kim, Myung Soo;Kwon, Chan Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.470-474
    • /
    • 2013
  • Surfaced-enhanced Raman scattering (SERS) of 4,4'-biphenyldithiol (BPDT) has been investigated at a silver island film. Ordinary Raman (OR) spectra of neat sample in solid state and in basic solution have also been taken for comparison. The spectral feature in the SERS spectrum was similar to that for the OR spectrum in basic solution, except for the broadening of ring stretching bands indicative of the presence of surface-phenyl ring $\pi$ interaction. In contrast, only absence of the C-H stretching band with very small Raman scattering cross-section seemed not pertinent in judging the definitive orientation of molecule. The observed vibrational bands in the SERS spectrum have been assigned by referring to the normal modes and wavenumbers from density functional theory (DFT) calculations of the simple model as 4,4'-biphenyldithiolates bound to two Ag atoms at the both ends. Excellent agreement between the experimental and the calculated results was achieved, which is remarkable considering the level of theory applied.

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

  • Lee, Dong-Jin;Park, Se-Geun;Lee, Seung-Gol;O, Beom-Hoan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.538-542
    • /
    • 2013
  • We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.