• Title/Summary/Keyword: silty soil

Search Result 388, Processing Time 0.029 seconds

Pollution Characteristics of Leachate and Underground Soil of the Landsfill Site and Possibilities of Landfill Site using Clay Layer of the Sea Shore (일반폐기물 매립장의 침출수에 의한 하부토양의 오염과 해안점토층을 이용한 폐기물 매립장의 건설 가능성)

  • 이병호;전옥수
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.383-392
    • /
    • 1998
  • Pollution characteristics of leachate and underground soul of the two landfill states were Investigated Domestic wastes were dumped In the two adjacent landfill states. Only small portion of S landifill site was filled with domestic wastes at the first stage of dumping, and most portion of the site was filled with construction wastes. However Y landfill strate was filed with mostly domestic wastes. Higher concentrations of organic pollutants including VOCs were measured In Y landfill site leachate than In S tendon site. Underground souls of the two linam states were analyzed by the two kinds of leaching methods, KEP (Korean Extraction Processl and Acid Digestion. Underground souls of the both landfill states were not polluted by leachates. Underground soils of the two were composed of firie salty material. Thus It Is fecund that fine silty soul layer of the sea shore may be used as a landfillsite.

  • PDF

토양오염 유발시설의 오염현황 조사 및 오염토양 복원 방안 연구

  • 노성혁;백형환;신정남
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.344-347
    • /
    • 2003
  • 본 조사를 통해 토양오염유발시설 중 유류 유출사고가 잦은 주유소에서의 오염현황 조사방법과 오염토양에 대한 적정한 정화기법을 제시하고자 하였다. 오염현황 조사결과, 지층구조 는 전반적으로 Clay로 구성되어 있으나 오염토양 주변은 비교적 투수도와 통기성이 우수한 Silty Sand층을 나타내고 있었다. 본 주유소의 경우 주유기 주변(상층부)과 지하유류저장탱크 주변(수직분포)에 오염이 분포되어 있고, 오염원인은 주유기의 배관 파손 및 결함에 의해 발생한 것으로 예상된다. 본 조사지역에 대한 정화기법으로는 토양증기추출기술(SVE)과 불포화대를 생물학적으로 복원할 수 있는 바이오벤팅기술을 결합시킨 Bioslurping이 효과적일 것으로 평가된다. 또한 Bioslurry injection treatment를 병행하여 효과적으로 고농도의 오염토양을 처리하는 것이 바람직할 것으로 판단된다.

  • PDF

Analysis of Soil Improvements and Soil Characteristics of the High Yielding Paddies (다수확답(多收穫畓) 토양(土壤)의 관리상황(管理狀況)과 이화학적(理化學的) 특성(特性) 분석(分析))

  • Shin, Weon-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.207-211
    • /
    • 1984
  • A series of soil surveys was conducted in 102 high yielding paddies randomly selected. Each paddy field was the contest winner's in a county, a province or the nationwide during 1976 to 1979. The data on soils and yields of the paddies were evaluated to find out the better practices. Cultivation practices such as intermittent irrigation, deep ploughing and application of soil improvement materials were intensively carried out with the increasing rates of yield. But, the yield of rice in the high yielding paddies was not significantly different according to the paddy soil type or the suitability calss. About 70% of the high yielding paddies were distributed in loam and silty clay loam. The properties of top soil in the high yielding paddies were more improved as compared with the common paddies. The cultivated soil depth and nutrient holding capacity were thought of as the important soil factors for high yield.

  • PDF

A Study on the Effect of Soil Wineral and Component of the Pore Fluid to the Electrical Resistivity (흙의 구성광물과 간극수의 성분이 비저항값에 미치는 영향에 관한 연구)

  • Yoon, Chun-Kyeong;Yu, Chan;Yoon, Kil-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • The environmental problem of the rural area has been accelerated in soil as well as water. Soil contamination is usually caused by improper operation of landfills, abandoned mine fields, accidental spills, and illegal dumpings. Once soil contamination is initiated, pollutants migrate and may cause groundwater contamination which takes much effort for remediation. Early detection, therefore, is important to prevent further contamination. Electrical resistivity method was used to detect soil contamination, but it was not effective to the heterogeneous condition. Static cone penetrometer test (CPT) has been used widely to investigate geotechnical properties of the underground. In this study, electrical resistivity method and CPT are combined to improve the applicability of it. The pilot test was performed to examine the variation of electrical resistivity with different soil minerals and pore fluid characteristics. Soil samples used were poorly graded sand, silty sandy soil, and weathered granite soil. For all the cases, electrical resistivity decreased with increasing of moisture content. Soil mineral also affected the electrical resistivity significantly. Above all, leachate addition in the pore fluid was very sensitive and caused decreasing of electrical resistivity markedly. It implies that electrical resistivity method can be applied to investigate pollutant plume effectively. This is specially sure when the sensors contact the contaminated soils directly. The CPT method involves cone penetration to the ground, therefore, underground contamination around the cone could be investigated effectively even for heterogeneous condition as it penetrates if electrical resistivity sensors are attached on the cone.

  • PDF

Taxonomical Classification and Genesis of Jeju Series in Jeju Island (제주도 토양인 제주통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.230-236
    • /
    • 2010
  • Jeju Island is a volanic island which is located about 96 km south of Korean Peninsula. Volcanic ejecta, and volcaniclastic materials are widespread as soil parent materials throughout the island. Soils on the island have the characteristics of typical volcanic ash soils. This study was conducted to reclassify Jeju series based on the second edition of Soil Taxonomy and to discuss the formation of Jeju series in Jeju Island. Morphological properties of typifying pedon of Jeju series were investigated, and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has dark brown (10YR 3/3) silt clay loam A horizon (0~22 cm), strong brown (7.5YR 4/6) silty clay BAt horizon (22~43 cm), brown (7.5YR 4/4) silty clay Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay loamBt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay loam Bt3 horizon (105~150 cm). It is developed in elevated lava plain, and are derived from basalt, and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85%phosphate retention, and higher bulk density than 0.90 Mg $m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol. Its has 0.9% or more organic carbon in the upper 15 cm of the argillic horizon, and can be classified as Humult. It dose not have fragipan, kandic horizon, sombric horizon, plinthite, etc. in the given depths, and key out as Haplohumult. A hoizon (0~22 cm) has a fine-earth fraction with both a bulk density of 1.0 Mg $cm^{-3}$ or less, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0. Thus, it keys out as Andic Haplohumult. It has 35% or more clay at the particle-size control section, and has thermic soil temperature regime. Jeju series can be classified as fine, mixed, themic family of Andic Haplohumults, not as ashy, thermic family of Typic Hapludands. In the western, and northern coastal areas which have a relatively dry climate in Jeju Island, non Andisols are widely distributed. Mean annual precipitation increase 110 mm, and mean annual temperature decrease $0.8^{\circ}C$ with increasing elevation of 100m. In the western, and northern mid-mountaineous areas Andisols, and non Andisols are distributed simultaneously. Jeju series distributed mainly in the western and northern mid-mountaineous areas are developed as Ultisols with Andic subgroup.

Effect of Zeolite Application on Growth and Yield of Chinese Cabbage and Chemical Properties of Soil Under Greenhouse Cultivation

  • Kim, Lee-Yul;Kim, Ki-In;Kang, Seong Soo;Kim, Jung-Ho;Jung, Kang-Ho;Hong, Soon-Dal;Lee, Won-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.218-224
    • /
    • 2015
  • Zeolite may help crop growth, yield increase, and salt removal. Field experiment under greenhouse cultivation was conducted to study the effect of zeolite application on growth and yield of Chinese cabbage (Brassica campestris L.) and soil. Soil was classified as Gyuam series (coarse silty, mixed, nonacid, mesic family of Aquic Fluvaquentic Eutrudepts). Six zeolite rates were 0, 3, 5, 10, 20 and $40Mg\;ha^{-1}$. Experimental design was a completely randomized design. Chinese cabbage was grown three times consecutively. Established plant number of plant and yield as fresh weight (F.W.) were measured and soil samples were taken before and after harvesting. Chinese cabbage yield was $76.9Mg\;ha^{-1}$ at a rate of $20Mg\;zeolite\;ha^{-1}$, $54.3Mg\;ha^{-1}$ at a rate of $5Mg\;zeolite\;ha^{-1}$, and $51.3Mg\;ha^{-1}$ at control (no zeolite), respectively. Second order regression analysis using zeolite rate and yield showed that optimum zeolite application rate was between 24 and $26Mg\;ha^{-1}$. The regression equation explained about 88% of the yield variability. The electrical conductivity (EC) decreased from 3.2 to $1.0dS\;m^{-1}$ for all treatments so that salt accumulation was not a concern. Based on the results, we recommend that optimum zeolite application rate is between 20 and $24Mg\;ha^{-1}$ for Chinese cabbage under greenhouse cultivation.

Density of Arbuscular Mycorrhizal Fungi and Chemical Properties of Soils in Seasoning Crop Cultivation (조미채소 재배지의 토양 화학성에 따른 균근균 분포특성에 관한 연구)

  • Sohn, Bo-Kyoon;Kim, Hong-Lim;Kim, Young-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.145-153
    • /
    • 2003
  • The average values of soil chemical concentration in investigation regions were pH 5.93, $25.9g\;kg^{-1}$ of organic matter, $742mg\;kg^{-1}$ of available phosphate and $44.7mg\;kg^{-1}$ of nitrate nitrogen. The number of mycorrhizal spores analysed from 1g of soil sample was 12.1 for onion, 11.7 for garlic and 10.1 for red pepper. In fractionation of soil texture, clay and silty clay showed more than 15 spores per 1g of soil. There was no relationship between spore density and soil nutrition of pH, organic matter, $NO_3-N$ and Av. $P_2O_5$. However, the number of spores was constant level independent on the concentration of soil nutrition. Spores identified in this study are as follows: Glomus clarum, Glomus intraradices, Glomus etunicatum, Gigaspora rosea and Gigaspora margarita.

Field Model Test of the Non-power Soil Cleaning System (무동력 토사제거시스템의 현장모형실험)

  • Park, Chan Keun;Lee, Young Hak;Hong, Seok Min;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.63-73
    • /
    • 2019
  • Coastal and fishing facilities are gradually deteriorating in function due to the continual accumulation of soil sediments, which has affected local economic activities. Currently, there are many methods to remove soil sediments, but these methods are either a temporary solution or require a repetitive removal of the soil sediments, which is a huge financial burden for the maintenance of the facilities. To solve these problems, this study proposed a non-power soil cleaning system and evaluated field applicability by carrying out field model tests. The conditions for the evaluation focused on the drainage-elapsed time and drainage-outflow velocity according to the water level change in the water tank. In the field test, silty clay and sand were separately installed, and sedimentation soil removal test was practiced. As a result, the system was verified to have a sufficient outflow velocity for the removal of soil sediments. In addition, a generalization equation that can be used in different regions of the tide was suggested in this study. These results will greatly contribute to removing soil sediments in ports and dike gate facilities on the southwest coast. Since the system is an eco-friendly technology that does not require additional energy, thus it is expected to contribute to maintenance of sustainable facility performance as well as economic effect in the future.

Residue of Fungicide Myclobutanil and Change of Soil Microflora in Upland Soil at Different Evironmental Conditions (환경차이에 따른 밭토양 중 살균제 Myclobutanil의 잔류 및 토양미생물상 변화)

  • Han, Seong-Soo;Choi, Chan-Gyu;Jeong, Jea-Hun;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.28-44
    • /
    • 1995
  • Residue level of myclobutanil[2-p-chlorophenyl-2-(1H-1,2,4-trizol-l-yl-methyl) hexane nitril] and number of soil microorganism were investigated at different environmental conditions such as the sterile and the non-sterile soils, moisture content, pH, temperature, application rate, and soil types under laboratory and field to study the effect of those factors on degradation characteristics of this fungicide and change of microflora in soil. Decomposition rate of myclobutanil was 3.9 times faster in the non-sterile soil than in the sterile soil, 1.6 times in the field than in the laboratory, 1.4 times in the concentration of 10ppm than in that of 20ppm, and 1.2 times in the clay loam soil than in the silty loam soil. Degradation rate of myclobutanil was the fastest at pH 9.0 among the tested pHs and the latest at pH 5.5. Degradation rate of myclobutanil was in order of $27^{\circ}C$ > $37^{\circ}C$ > $17^{\circ}C$. Otherwise, the effect of soil water content on myclobutanil degradation was found not clear. Number of microorganism in the non-sterile soil was remarkedly more than that in the sterile soil. Numbers of microbes were not significantly different between treatment plot and non-treatment plot of myclobutanil at the different conditions of soil moisture content, pH, temperature and soil type. Numbers of fungi and total microbes were more in the treatment than in the non-treatment of myclobutanil at field test but the same trends were not found at laboratory test. Within non-treatment of myclobutanil, numbers of microbes were not significantly different under the various condition of pH, application rate, and soil type in laboratory and upland field. The number of bacteria were more in 60% moisture content of water holding capacity than in 40% and the number of fungi were more in $17^{\circ}C$ of soil temperature than in $37^{\circ}C$. Within the application plot of myclobutanil, numbers of microbes were not significantly different at various pH in laboratory and upland field. The number of bacteria and total microbes were more in 80% moisture content of water holding capacity than in 40% and 60% and actinomycetes were more at $27^{\circ}C$ in the clay loam soil than at $17^{\circ}C$ in the silty loam soil.

  • PDF

Effect of Average and Cyclic Shear Stress on Undrained Cyclic Behavior of Marine Silty Sand (해양 실트질 모래의 비배수 동적 거동에 대한 평균 및 반복전단응력의 영향)

  • Muhammad, Safdar;Son, Su-Won;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • Offshore wind turbine foundations are subjected to wind, current and wave loadings. Hence, both static and cyclic behaviors of foundation's soil are important for the design of offshore wind turbine foundation. Undrained cyclic behaviors of soils depend upon the number of loading cycles, vertical effective stress, cyclic shear strain, relative density, and the combination of cyclic and average shear stresses. In order to evaluate the effect of average and cyclic shear stresses on the undrained cyclic behavior of marine silty sand, cyclic direct simple shear (CDSS) tests are performed with relative density of 85%, vertical effective stress of 200 and 300 kPa, and failure criteria of either 15% double amplitude cyclic shear strain (${\gamma}_{cyc}$) or permanent shear strain (${\gamma}_{p}$). The results are presented in the form of design graphs or contour diagrams. The undrained cyclic behavior of marine silty sand is found to be dependent on cyclic and average shear stresses and/or the combination of both shear stresses. It is found that when significant average shear stress exists the permanent or progressive shear strain is the govering failure criteria instead of cyclic shear strain.