• Title/Summary/Keyword: siltation model

Search Result 6, Processing Time 0.02 seconds

Prediction of Harbor Siltations Using a Numerical Model for Sea Bottom Configuration (해빈변형모형을 이용한 항내매몰예측)

  • 김규한;백승화;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.4
    • /
    • pp.201-207
    • /
    • 1997
  • Most of small harbours are suffering serious harbour siltation problems in the eastern coast of Korea. Also, many of them necessitate maintenance dredging every year. In order to solve these problems, we have to predict the amount of previous harbour siltation. In the present study, numerical prediction of the harbour siltation has been accomplished using numerical model of 3D beach deformation around a structure. And, also the validity of the model has been confirmed by the field investigation.

  • PDF

A Study on Silt Transport of Seabed Around Incheon Harbor (인천항 주변 silt 이동에 관한 연구)

  • Baek, Seung-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.133-142
    • /
    • 2010
  • We calculated using siltation model to know the influnce of the tidal current, the tidal level, the sediment transport of seabed around sea area due to the construction of the Song do New city. We calculated the tidal current and based on this we estimated scour, sedimentation using the advection-diffusion equation and accessed the sediment transport of seabed before and after the construction of the New city. Sedimentation was increased in the east coast of Young jong Do, and Scour was increased according to the direction from the front route of north harbor to Ho do. Tidal level was increased overall.

Long-Term Shoreline Change and Evaluation of Total Longshore Sediment Transport Rate on Hupo Beach (후포해빈에서 해안선의 장기변화 및 전연안표사량의 추정)

  • Park, Il-Heum;Lee, Young-Kweon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • The harbor siltation by longshore sediment transports has become a serious problem on the East Coast of Korea. A reasonable prediction of the longshore sediment rate is important to approach the siltation problem effectively. In the recently developed 1-line model, the empirical constants of the sediment transport formula, which include the absolute quantity of sediment transport rate and the spatial distribution of breaking wave height by wave deformation, are treated as calibration parameters. Since these constants should be determined by the very long-term shoreline data, the longshore sediment rates are much more reasonable values. The method was applied to Hupo Beach, which has experienced heavy siltation. The authors also discuss long-term shoreline change using aerial photos and the observed wave-induced current patterns. According to the result, the SW-direction sediment transport rate was $146,892m^3/year$, and the NE direction was $2,694,450m^3/year$ at Hupo Beach for the last 11 years. The siltation in Hupo Harbor might be affected by the NE-direction sediment transport from Hupo Beach.

Hind-casting Simulation of Sedimentation Changes and Passage Hindrance In Keum River Estuary (금강하구 퇴적변화 및 통행지장에 관한 후측모의)

  • Suh SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.224-232
    • /
    • 2004
  • Sedimentation changes related with bottom shear stress attenuation at JangHang channel in the Keum River Estuary, where several huge coastal constructions including an estuarine dam have been conducted for last 2 decades, were evaluated for 7 cases to figure out passage hindrance through the channel by a hydrodynamic model using hind-casting technique from 1988 to 2000 at every 2 years interval. Due to the construction of Keum River Estuary Dam, the maximum bottom shear stress rapidly lessened to $0.2-0.6N/m^2$ compared to$1-2N/m^2$ in natural status. Especially it marks below the critical shear stress of $0.4N/m^2$ resulting in severe siltation in the channel just after the closing of dam gates in 1994. It is concluded that the dam may block the tidal energy propagation to upstream and directly results in sedimentation environment in front of dam site. It is also revealed that at least 20% of passage hindrance of small fishing boats through the channel could be counted due to sedimentation by analysis of predicted mean spring tides.

An Investigation-Study on the Erosion at Hak-Dong Gravel Beach (학동 해빈의 침식에 관한 조사.연구)

  • 함계운;김진홍;장대정
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.65-75
    • /
    • 2002
  • The changes of sea bottom configuration, which may cause the coastal disasters, have been considered as social problems. It is obvious that the beach deformation is attributable to the sediment transport associated with erosion and siltation in coastal areas such esturies, channel and harbors. The prediction method and countermeasures far them, however, are not on the level of satisfaction, which indicates that make efforts should be made on developing them. Groin was constructed at Hak-Dong gravel beach to embark ship at 1996, as a result region of right of groin, severe erosion of beach is proceeding till now 1999. In this study, based on the field measurements, involved the one-line theory model which was selected for the prediction of shoreline change to prepare coastal protection methods of Hak-Deng gravel beach. Author found that the storaged sediment estimation model by Sonu and Beek(1971) is useful model at the Hak-Dong gravel beach by the use of topographical survey data from September, 1998 to September, 1999.

Numerical Analysis of Modified Seabed Topography Due to the Presence of Breakwaters of Varying Reflection Characteristics using Physics-based Morphology Model [SeoulFoam] (방파제 형식에 따른 반사율 변화가 해저지형에 미치는 영향 수치해석: 물리기반 지형모형 SeoulFoam을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.168-178
    • /
    • 2021
  • Numerical simulations were implemented to look into the modified seabed topography due to the presence of breakwaters of varying reflection characteristics. The numerical model was composed of OlaFlow, an OpenFoam-based tool box, and a physics-based morphology model [Seoul Foam]. In doing so, the interaction between the seabed, which undergoes deformation due to siltation and scouring, and the incoming waves was described using Dynamic Mesh. The rubble-mound, vertical, and curved slit caisson breakwaters with varying reflection characteristics resulted in standing waves that differ from each other, shown to have a significant influence on the seabed topography. These results are in line with Nielsen's study (1993) that sands saltated under the surface nodes of standing waves, where the near-bed velocities are most substantial, convected toward the surface antinodes by boundary-layer drift. Moreover, the crest of sand waves was formed under the surface antinodes of standing waves, and the trough of sand waves was formed under the surface antinodes. In addition, sand wave amplitude reaches its peak in the curved slit caisson with a significant reflection coefficient, and the saltation of many grains of sand would cause this phenomenon due to the increased near-bed velocity under the nodes when the reflection coefficient is getting large.