• Title/Summary/Keyword: siloxane group

Search Result 34, Processing Time 0.027 seconds

A Study on Dielectric Strength and Insulation Properly of PDMS (실리콘 폴리머의 내전압 및 절연특성에 관한 연구)

  • 지원영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.941-946
    • /
    • 2001
  • The fundamental study on HTV silicone for insulation material has been performed. In order to estimate the chemical behavior of siloxane under high voltage, H-NMR, GPC and vinyl contents measurement were used. As an experimental results, after high voltage stress, the molecular weight of siloxane are increased, the vinyl contents of siloxane are decreased. The dielectric strength of vinyl group containing siloxane was lower than only methyl containing siloxane.

  • PDF

Preparation and Adhesive Properties of Acrylate Copolymer with Siloxane Group (실록산기를 함유한 아크릴 공중합체의 제조 및 점착특성)

  • Yoon, Keun-Byoung;Noh, Young-Joo;Lee, Dong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.121-125
    • /
    • 2007
  • Siloxane monomer and oligomer were introduced to n-butyl acrylate and methyl methacrylate copolymer for improvement of water resistance and tactile sensation of acryl-type emulsion. Terpolymerimerization of n-butylacrylate, methyl methacrylate and siloxane monomer or oligomer was carried out in aqueous solution. The glass transition temperature (Tg) of terpolymer decreased with increasing siloxane monomer, however, the Tg of terpolymer increased with increasing siloxane oligomer due to the crosslinking of acrylated end group. The adhesion property and surface energy of the obtained terpolymer decreased with introducing siloxane monomer or oligomer in terpolymer. Decrement of tack and surface energy means the enhancement of water resistance and tactile sensation of the emulsion.

Fully Aliphatic Polyimides- Influence of adamantane and siloxane moieties

  • Ha Chang-Sik;Kim Il;Mathews Anu Stella
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.336-336
    • /
    • 2006
  • The present work is focused on the synthesis of a series of fully aliphatic polyimides and the incorporation of adamantane moieties and siloxane groups to them and studies the deviation in the basic traits of the fully aliphatic polyimides. In this work, we wish to discuss how adamantyl group and siloxane moieties influence the basic properties of aliphatic polyimides (APIs), by synthesizing various fully aliphatic polyimides and polyimidesiloxanes (APISiO).

  • PDF

Effect of Siloxane Oligomer on Thermal Stability and Internal Stress of Epoxy Resins (실록산 올리고머가 에폭시 수지의 열안정성 및 내부응력에 미치는 영향)

  • Kwak, Geun-Ho;Park, Soo-Jin;Park, Jun-Ha;Kim, Kong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.701-706
    • /
    • 1999
  • The effect of siloxane oligomer content on thermal stability and internal stress of DGEBA epoxy resin was investigated. Siloxane-epoxy polymers having terminal epoxy group were prepared by reaction of siloxane-DDM prepolymer with DGEBA epoxy resin. Thermal stability was studied in terms of the initial decomposition temperature(IDT), temperature of maximum rate of weight loss($T_{max}$), integral procedural decomposition temperature(IPDT), and decomposition activation energy($E_t$) using TGA data. The thermal stability increased with increasing the siloxane oligomer content and showed a maximum value in the case of 5 wt% siloxane oligomer content in the blend system. While, the coefficient of thermal expansion(${\alpha}_r$) and the flexural modulus($E_r$) allowed us to study internal stress of the blend system. As the content of siloxane oligomer increases, the internal stress systematically decreases as decreasing both ${\alpha}_r$ and $E_r$.

  • PDF

Fabrication of High Permeable Nanoporous Carbon-SiO$_2$ Membranes Derived from Siloxane-containing Polyimides

  • Kim, Youn Kook;Han, Sang Hoon;Park, Ho Bum;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • The silica containing carbon (C-SiO$_2$) membranes were fabricated using poly(imide siloxane) (PIS) having -CO- swivel group. The characteristics of porous C-SiO$_2$ structures prepared by the pyrolysis of poly(imide siloxane) were related with the micro-phase separation between the imide block and the siloxane block. Furthermore, the nitrogen adsorption isotherms of the CMS and the C-SiO$_2$ membranes were investigated to define the characteristics of porous structures. The C-SiO$_2$ membranes derived from PIS showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures, while the CMS membranes derived from PI showed the type I isotherm. For the molecular sieving probe, the C-SiO$_2$ membranes pyrolyzed at 550, 600, and 700$^{\circ}C$ showed the O$_2$ permeability of 924, 1076, and 367 Barrer (1 ${\times}$ 10$\^$-10/㎤(STP)cm/$\textrm{cm}^2$$.$s$.$cmHg) and O$_2$/N$_2$ selectivity of 9, 8, and 12.

Synthesis and Chnracterization of Organophilic Montmorillonites Modified with Alkyl Siloxane Amino 01igomers (알킬실록산 아민 올리고머 구조를 함유한 친유성 몬모릴로나이트의 제조 및 특성평가)

  • 김효주;김용석;원종찬;이미혜;최길영
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.135-141
    • /
    • 2003
  • A series of organophilic montmorillonites (MMTs) modified with various alkyl siloxane amino oligomer groups have been synthesized and their properties were investigated. New organophilic MMTs containing siloxane amino oligomers with alkyl group instead of conventional alkyl amines were synthesized to improve thermal stability as well as gallery spacing. The organophilic MMTs were synthesized from MMT by utilizing the siloxane amino oligomers with various alkyl groups in the water/dioxane solution, which was performed without aq. HCl. Thermal decomposition temperature, gallery spacing, and hydrophobicity of synthesized organophilic MMTs were investigated. X-ray diffraction and TEM experiment results on new organophilic MMTs demonstrated that introduction of siloxane amine oligomers increased d-spacing between silicate layers. The decomposition temperatures of new organophilic MMTs measured by TGA was remarkably improved above 200℃ as compared with those of conventional alkyl substituted organophilic MMTs.

Synthesis of Poly Imide/α'ω'-di Poly Acrylamide (3-Mercaptopropyl) Trimethoxysilane Terminated Copolymer (양 말단에 MPTMS-아크릴아미드로 치환된 폴리이미드의 합성)

  • Min, Jun Ho;Park, Chan Young;Min, Seong Kee
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.478-485
    • /
    • 2016
  • An amide group was introduced to restrain the cohesion of silica nano-particles and copolymerized with polyamic acid. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2, 6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA) using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were studied using FT-IR and XRD analyses; an analysis of the surface characteristic groups was conducted via XPS. Changes in the thermal properties were examined through DSC and TGA; solubility for solvents was also studied.

Characteristics of Heat Curable Polyorganosiloxane Coating Materials (페닐기 함유 열경화성 폴리유기실록산 코팅제 특성)

  • Lee, Jin Hyouk;Kang, Doo Whan;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.499-505
    • /
    • 2015
  • Polyorganosiloxane having controlled cross-linking density and phenyl group content were prepared by dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS) and phenyltrimethoxysilane (PTMS). The effect of cross-linking density and phenyl group content on the physical properties of siloxane resin and its coated film have been invetigated. Si-NMR results confirmed that synthesized siloxane resins have equivalent D $T^{Me}$ $T^{Ph}$ structures according to applied mole ratios of DMDMS, MTMS and PTMS. Polyorganosiloxane having higher cross-linking density with high phenyl content showed the high molecular weight and increasing phenyl content resulted in higher refractive index as well as better thermal stability. Cross-linking density is more important factor than phenyl content to obtain higher pencil hardness of coated film on the glass. Our results concluded that even polyorganosiloxanes having similar siloxane structures show different physical properties as function of cross-linking density and phenyl content in polyorganosiloxane.

Synthesis and Properties of Side Chain Liquid Crystalline Polymers with Siloxane Flexible Chain

  • Park, Jong-Ryul;Bang, Moon-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.173-179
    • /
    • 2017
  • Side-chain liquid crystalline polymers having polysiloxane skeletons were synthesized by a thiol-ene reaction, using two kinds of mesogenic groups: a cholesteryl group for induction into a cholesteric liquid crystal phase and a triazomesogenic group for imparting light-sensitivity. All the synthesized polymers were crystalline, except the one with a single cholesteryl group. Crystallinity, glass transition temperature, and melt transition temperature increased with increasing content of the azomesogenic group. The polymer (P-C10A0) with a single cholesteryl group has a cholesteric phase, the one (P-C0A10) with a single azomesogenic group has a smectic phase, and those with both types of mesogenic groups showed both smectic and cholesteric phases. The temperature ranges of the two liquid crystalline phases in the co-polymers were independent of the contents of the two types of mesogenic groups. The rate of photoisomerization of the light-sensitive azobenzene group in the polymer decreased with increasing azobenzene content due to steric hindrance between the azomesogenic groups.

Synthesis of Copoly(amide-imide)s Based on Silica Nano Particles-polyacrylamide

  • Min, Jun Ho;Park, Chan Young;Min, Seong Kee
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.138-146
    • /
    • 2016
  • It is an inconvenience for silica nano-particles to dry again when using it in that they cohere each other through moisture in the air. Acrylamide groups were introduced to improve such inconvenience and copolymerized with silica nano-particles and then we copolymerized again with polyamic acid in order to increase thermal characteristic. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2,6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA), using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were researched by FT-IR and XRD analyses and the analysis of surface characteristic groups was conducted via XPS. A change in thermal properties was examined through DSC and TGA and solubility for solvents was also researched.