Precambrian metamorphic rocks of the Gapyeong-Cheongpyeong area consist of banded gneiss, augen gneiss, leucocratic gneiss, quartz schist and quartzite, together with minor intercalations of serpentinite, amphibolite and marble. Mineral assemblages of meta-sedimentary rocks are classified into three types: sillimanite-free; sillimanite-bearing; and sillimanite+K-feldspar-bearing assemblages. Compositions of metamorphic phases depend on the type of mineral assemblages. In particular, the Ca contents of plagioclase and garnet are high in sillimanite-free assemblges. Kyanite occurs in three samples, and coexists with sillimanite in one sample. The presence of kyanite indicates that metamorphic rocks of the study area have experienced the Barrovian type metamorphism. Peak metamorphic conditions estimated from various geothermobarometers and phase equilibria are 618-674$^{\circ}C$ and 6.5${\pm}$2.0 kbar for sillimanite-free assemblages, and 701-740$^{\circ}C$ and 4.4${\pm}$0.8 kbar for sillimanite-bearing assemblages, respectively. Furthermore, a clockwise P-T-time path is deduced for the study area, based on the following observations: (1) the polymorphic transition of kyanite to sillimanite, (2) the occurrence of sillimanite and K-feldspar belonging to the upper amphibolite facies, and finally (3) the retrograde metamorphism characterized by muscovite-, chlorite-, and actinolite-bearing assemblages.
With low thermal expansion coefficients, eucryptite (Li2O.Al2O3.2SiO2) and spodumene (Li2O.Al2O3.4SiO2) in LAS ceramic system show good thermal shock resistance. In this study, sillimanite or kaolin group silicate minerals and Li2CO3 were used as starting materials, and if necessary SiO2 or Al2O3 were added for making stoichiometrically formed specimens. By this process, eucryptite powders were synthesized and characterized. The powder mixtures of lithiumcabonate and silicate minerals calcined at 80$0^{\circ}C$ for 2 hrs were made into powder compacts. $\beta$-Eucryptite single phase was formed via intermediate phases of Li2SiO3 and LiAlO2 et al, by heating at 110$0^{\circ}C$ or 120$0^{\circ}C$ for 10 hrs from those powder compacts. When using the sillimanite group minerals, Virginia kyanite or andalusite was reacted to form eucryptite at 120$0^{\circ}C$and CMK International kyanite were completed at 110$0^{\circ}C$. When kaolin group minerals were used, it was found that the synthesizing temperature (100$0^{\circ}C$) of $\beta$-eucryptite from the mixture of New Zealand white kaolin was lower than that from Hadong pink kaolin (110$0^{\circ}C$). The Microstructure of systhesized powder showed the irregular lump shape such as densed crystallines.
The Odesan Gneiss Complex consists of mainly migmatitic gneiss and porphyroblastic gneiss with locally intercated quartzite, amphibolite, marble and leucocratic gneiss. At least two different regional metamorphisms are recognized in the study area. Metamorphic grade of the first metamorphism increases from the K-feldspar-muscovite zone(in which biotite-muscovite-plagioclase-quartz and garnet-biotite-muscovite-K-feldspar-plagioclase-quartz assemblages occur) in the east and southwestern part of the study area to the K-feldspar-garnet zone(in which garnet-biotite-K-feldspar-plagioclase-quartz, biotite-K-feldspar-plagioclase-quartz, garnet-biotite-K-feldspar-plagioclase-sillimanite-spinel-quartz assemblages occur) in the northwestern part. Kyanite is found as inclusions in plagioclase. The second metamorphism is characterised by occurrence of cordierite. The metamorphic grade of 2nd metamorphism decreases radically from the central-western part near Gaeinsan in which cordierite-garnet-sillimanite-biotite-muscovite-quartz, cordierite-garnet-spinel-sillimanite-biotite-muscovite-quartz assemblages representing the garnet-cordierite zone are observed. The garnet-cordierite zone is surrounded by the sillimanite-cordierite zone which shows cordierite-sillimanite-biotite-plagioclase, cordierite-muscovite-biotite-plagioclase and sillimanite-muscovite-biotite-plagioclase assemblages. The peak metamorphic P-T conditions of the first metamorphism calcuted from garnet-biotite-sillimanite-K-feldspar-plagioclase-spinel assemblage are 5.4~7.4 kb and $776-789^{\circ}C$. Real P-T condition of the first metamorphism might be higher than the calcuated P-T condition according to the study based on the phase equilibria. P-T conditions calcuated from the garnet-biotite in plagioclase are 12.5kb and $650^{\circ}C$ which indicate that the P-T path of the first metamorphism had passed a high pressure condition before the peak metamorphic temperature condition. The peak metamorphic P-T conditions of the second metamorphism calcuated from garnet-biotite-cordierite-spinel-quartz assemblage are $680~750^{\circ}C$ at pressures lower than 6 kb. In the Odesan Gneiss Complex, the first metamorphism of medium pressure and high temperature had occurred after the high pressure condition and fast uplift and then the second metamorphism of low pressure condition occurred after sedimentation of the Kuryong Group.
The Cannington Ag-Pb-Zn deposit, northwest Queensland, Australia developed around the host rocks composing banded and migmatitic gneisses, sillimanite-garnet schist and amphibolite. Three crystal habits of sillimanite, gahnite (Zn-spinel) and garnet porphyroblasts occurred on the host rocks of the Cannington deposit could be used to delineate metamorphism that closely associated with Zn-mineralization in the deposit. Linkages the metamorphism to Zinc-mineralization is determined in four chemical systems, KFMASH (K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-$H_2O$), KFMASHTO (K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-$H_2O$-TiO$_2$-Fe$_2$O$_3$), NCKFMASH (Na$_2$O-CaO-K$_2$O-FeO-MgO-AlO$_3$-SiO$_2$-$H_2O$) and MnNCK-FMASH (MnO-Na$_2$O-CaO-K$_2$O-FeO-MgO-AlO$_3$-SiO$_2$-$H_2O$), using THERMOCALC program (version 3.1; Powell and Holland 1988). Partial melting in MnNCKFMASH and NCKFMASH systems occurs at lower temperature than in the KFMASH and KFMASHTO systems. The partial melting temperature decreases with increasing of Na/(Na+Ca+K) of the bulk rock compositions in the MnNCKFMASH system. The host rocks have melted ca 15 vol.% in the MnNCKFMASH system at peak metamorphic conditions (634$\pm$62$^{\circ}C$ and 4.8$\pm$1.3 kbar), but partial melting have not occurred in KFMASHTO system. Based on calculations of sillimanite isograd in different systems and sillimanite modal pro-portion, prismatic and rhombic sillimanite and gahnite porphyroblasts including prismatic sillimanite inclusion probably have resulted from pressure and temperature increasing through partial melting (from 550~$600^{\circ}C$, 2.0~3.0 kbar to 700~75$0^{\circ}C$, 5.0~7.0 kbar), furthermore have experienced N-S then W-E crustal shortening during D$_1$ and D$_2$ deformation. Consequently, Zinc mineralization related to gahnite growth occurred during D$_2$ and was redistributed and upgraded by partial melting and retrograde metamorphism into structural and rheological sites during shearing in D$_3$.
Though spodumene have a law theraml expension and good thermal shock resistance, its sintering temperature is too close to its melting point in the application for industral purpose. Solving the problems, impurities within the silicate minerals act as a frit during firing, so its densification is expected through enlargement of sintering temperature range. By the heat treatment of starting materials, mixtures of silicate mineral, lithium carbonate, if necessary SiO2 or Al2O3 were added for stoichiometric correction, in the range of 1000~125$0^{\circ}C$ for 10 hrs, $\beta$-spodumene single phase was synthesized. Mixtures with sillimanite group minerals, $\beta$-spodumene was formed at 120$0^{\circ}C$ or 125$0^{\circ}C$ via intermediate phases of petalite, Li2SiO3 and LiAlO2. For the case of kaolin group minerals, synthesis were completed at 110$0^{\circ}C$ for Hadon pink kaolin, 120$0^{\circ}C$ for New Zealand white kaolin, When pyrophyllite group minerals were used, those were at the range of 1000~125$0^{\circ}C$. Spodumene was completed at lowest temperature, 100$0^{\circ}C$ from the mixture of Wando pyrophyllite among them. Microstructure of synthesized powders showed the inrregular lump shape such as densed crystallines.
Proterozoic gneisss complex of the Paju-Gimpo area, Northwestern Gyeonggi Massif, consists of mainly gneiss and schist with locally intercalated quartzite and metamorphic calcareous rocks. Mineral assemblages of the gneiss and schist are classified into two type: sillimanite free (garnet zone) and sillimanite bearing (sillimanite zone) assemblages. In the Goyang area, Kyanite occurs as metastable relict grain in two gneiss samples, in which sillimanite, garnet, biotite, K-feldspar and plagioclase occur. Cordierite bearing mineral assemblages of gneiss are biotite+garnet+sillimanite+cordierite+plagioclase+quartz ($\pm$K-feldspar, muscovite), and represent the upper amphibolite or granulite facies metamorphism. The metamorphic complex has experienced two different regional metamorphism. The prograde metamorphism is a medium-pressure type characteries by kyanite. The peak metamorphic P-T condition of the prograde metamorphism calculated from the kyanite bearing rock is 7.0~9.4 kb and $718~778^{\circ}C$. The retrograde metamorphism, after the prograde metamorphism, is the low-pressure type characteries by occurrence of cordierite. The peak metamorphic P-T condition of later calculated from the cordierite bearing rock is 3.6~5.5 kb and $750~889^{\circ}C$. Together with the occurrence of relict kyanite, garnet+biotite+plagioclase assemblage as relict in the cordierite, and the result of estimated P-T metamorphic conditions indicate a clockwise P-T path.
The Janggun mine area is occupied by the Proterzoic and the Paleozoic meta-pelites, which are intruded by the Jurassic Chunyang granite. The metamorphic terrain is divided into four zones of progressive metamorphism on the basis of mineral assemblages. The zones are chlorite zone, staurolite zone, andalusite zone, sillimanite zone ascending order. Boundary lines between the zones resemble outline of the Chunyang granite mass. Isograd reactions are chlorite+chloritoid+muscovite=staurolite+biotite+quartz+water, staurolite+chlorite+muscovite+quartz=andalusite+biotite+water, and staurolite+muscovite+quartz=andalusite+biotite+garnet+water between the chlorite zone and the staurolite zone, the staurolite zone and the andalusite zone, and the andalusite zone and the sillimanite zone, repectively. They are univariant reactions in KFMASH component system. Metamorphic conditions estimated from garnet-biotite geothermometers and phase equlibria are $530^{\circ}C$ and lower than 4 kb.
Proceedings of the Petrological Society of Korea Conference
/
2006.02a
/
pp.43-60
/
2006
The Yeongnam Massif, one of Precambrian basements in Korean Peninsula, is characterized by widespread occurrence of low-pressure/high-temperature (LP/HT) schists and gneisses accompanying extensive anatexis and granitic magmatism. Metapelitic mineral assemblages define three progressive metamorphic zones pertinent to low-pressure facies series: cordierite, sillimanite and garnet zones with increasing temperature. Metamorphic grade ranges from lower amphibolite to lower granulite facies and metamorphic conditions reach ca. 750-800 C and 4-6 kbar in migmatitic gneisses. Migmatitic gneisses are prominent in the sillimanite and garnet zones. Textural and petrogenetic relationshipsin leucosome suggest that migmatitic gneiss is the product of anatexis of metasedimentary rocks. The migmatite formation during the prograde metamorphism is governed initially by fluid-present melting and subsequently by biotite-dehydration melting. The large amount of leucosomes in the sillimaniteand garnet zones can be explained by the fluid-present molting possibly triggered by an external supply of aqueous fluid. Field and geochronologic relationships between leucogranites and migmatitic gneisses further suggest that leucogranite has providedfluid and heat required for widespread migmatization.
The heavy minerals of a barred estuarine and lagoonal sediments along the North Carolina coast have been studied with more than one hundred samples. Currents, salinity, and pH exhibit well-developed gradients from the upstream parts of the estuaries on the west toward the open ocean on the east. Twenty- four heavy minerals were identified in sediments of the study area. However, less than half of these occur frequently and the remainder exist only in minor quantities or trace amounts. Heavy minerals usually comprise less than 1% of the sample but vary from sample to sample. The maximum amount of heavy minerals in sediments of sounds and estuaries is 2.4% and in sediments of Outer Banks is 16.7%. Opaque minerals range from 10 to 85% of the total heavy mineral assemblage. Garnet and sillimanite are relatively more abundant in the eastern part than the western part in the area. Garnet more abundant in the northern part than the southern part, whereas sillimanite is more abundant in the southern part than the northern part, because the garnet source is in the northern part and one of the sillimanite source is in the southern part in the study area. The results of heavy mineral study indicate that the source of sediments is the Blue Ridge and Piedmont crystalline complex, and Coastal Plain formations. Some portions of sediments are transported from the Atlantic Ocean by the landward currents. They further indicate that the sediments of the Atlantic coast in the study area are transported mainly from the northern part to southern part by longshore littoral currents, and some portions of sediments are transported from the southern part to the northern part by the Gulf Stream.
We report on kyanite newly found in the Yongduri gneiss complex of the Chuncheon-Hongcheon area, central Gyeonggi massif. Major mineral assemblage of quartzofeldspathic gneisses in the study area consists of biotite+ garnet+ sillimanite + plagioclase+ quartz${\pm}$kyanite${\pm}$K-feldspar${\pm}$muscovite. Kyanite occurs in four samples, and coexists with sillimanite in three of these samples. In most cases, kyanite is anhedral to subhedral, ranges up to Imm in the maximum dimension, and occurs as metastable relict grains. These observations indicate that the Yongduri gneiss complex has experienced a medium-pressure type metamorphism, followed by low-pressure type one belonging to the sillimanite+K-feldspar zone. Average temperature and pressure of the peak metamorphism are $683{\pm}62^{\circ}C$ and 4.9-5.5 kbar, respectively, when the existing chemical data are re-interpreted. In conjunction with the finding of kyanite in the Cheongpyeong-Gapyeong area (Lee and Cho, 19921, this study demonstrates that kyanite may occur regionally in central Gyeonggi gneiss complex. Moreover, the persistence of kyanite even after the high-T metamorphism of the sillimanitetK-feldspar zone suggests that the central Gyeonggi massif has experienced a tectonometamorphic evolution characterized by a rapid uplift.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.