• Title/Summary/Keyword: silicon nitride thin film

Search Result 117, Processing Time 0.035 seconds

Modeling of Charge Density of Thin Film Charge Density by Using Neural Network and Genetic Algorithm (유전자 알고리즘과 일반화된 회귀 신경망을 이용한 박막 전하밀도 예측모델)

  • Kwon, Sang-Hee;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1805-1806
    • /
    • 2007
  • Silicon nitride (SiN) 박막을 플라즈마 응용화학기상법을 이용하여 증착하였다. SiN박막의 전하밀도는 일반화된 회귀 신경망 (GRNN)을 이용하여 모델링하였다. PECVD 공정은 Box Wilson 실험계획표를 이용하여 수행하였다. GRNN 모델의 예측수행은 유전자 알고리즘 (GA)을 이용하여 최적화하였다. 최적화한 GA-GRNN 모델은 종래의 GRNN 모델과 비교하여, 약55%정도의 예측성능의 향상을 보였다.

  • PDF

Micromachinng and Fabrication of Thin Filmes for MEMS-infrarad Detectors

  • Hoang, Geun-Chang;Yom, Snag-Seop;Park, Heung-Woo;Park, Yun-Kwon;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jong-Hoon;Moonkyo Chung;Suh, Sang-Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In order to fabricate uncooled IR sensors for pyroelectric applications, multilayered thin films of Pt/PbTiO$_3$/Pt/Ti/Si$_3$N$_4$/SiO$_2$/Si and thermally isolating membrane structures of square-shaped/cantilevers-shaped microstructures were prepared. Cavity was also fabricated via direct silicon wafer bonding and etching technique. Metallic Pt layer was deposited by ion beam sputtering while PbTiO$_3$ thin films were prepared by sol-gel technique. Micromachining technology was used to fabricate microstructured-membrane detectors. In order to avoid a difficulty of etching active layers, silicon-nitride membrane structure was fabricated through the direct bonding and etching of the silicon wafer. Although multilayered thin film deposition and device fabrications were processed independently, these could b integrated to make IR micro-sensor devices.

  • PDF

Wear characteristics of boron nitride thin film for durability improvement of ultra- precision component (초정밀 부품의 내구성 향상을 위한 질화붕소 박막의 마멸 특성에 관한 연구)

  • Ku, Kyoung-Jin;Hwang, Byoung-Har;Lin, Li-Yu;Kim, Dae-Eun;Baik, Hong-Koo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.129-134
    • /
    • 2007
  • Boron nitride (BN) is a highly attractive material for wear resistant applications of mechanical components. BN is super hard and it is the second hardest of all known materials. It also has a high thermal stability, high abrasive wear resistance, and in contrast to diamond, BN does not react with ferrous materials. The motivation of this work is to investigate the tribological properties of BN for potential applications in ultra-precision components for data storage, printing, and other precision devices. In this work, the wear characteristics of BN thin films deposited on DLC or Ti buffer layer with silicon substrate using RF-magnetron sputtering technique were analyzed. Wear tests were conducted by using a pin-on-disk type tester and the wear tracks were measured with a surface profiler. Experimental results showed that wear characteristics were dependent on the sputtering conditions and buffer layer. Particularly, BN coated on DLC layer showed better wear resistant behavior. The range of the wear rates for the BN films tested in this work was about 20 to $100{\mu}m^3$/cycle.

  • PDF

Effect of Substrate Bias Voltage on the Properties of Hafnium Nitride Films Deposited by Radio Frequency Magnetron Sputtering Assisted by Inductive Coupled Nitrogen Plasma

  • Heo, Sung-Bo;Lee, Hak-Min;Kim, Dae-Il;Choi, Dae-Han;Lee, Byung-Hoon;Kim, Min-Gyu;Lee, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.209-212
    • /
    • 2011
  • Hafnium nitride (HfN) thin films were deposited onto a silicon substrate by inductive coupled nitrogen plasma-assisted radio frequency magnetron sputtering. The films were prepared without intentional substrate heating and a substrate negative bias voltage ($-V_b$) was varied from -50 to -150 V to accelerate the effects of nitrogen ions ($N^+$) on the substrate. X-ray diffractometer patterns showed that the structure of the films was strongly affected by the negative substrate bias voltage, and thin film crystallization in the HfN (100) plane was observed under deposition conditions of -100 $V_b$ (bias voltage). Atomic force microscopy results showed that surface roughness also varied significantly with substrate bias voltage. Films deposited under conditions of -150 $V_b$ (bias voltage) exhibited higher hardness than other films.

Low-Temperature Poly-Si TFT Charge Trap Flash Memory with Sputtered ONO and Schottky Junctions

  • An, Ho-Myoung;Kim, Jooyeon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.187-189
    • /
    • 2015
  • A charge-trap flash (CTF) thin film transistor (TFT) memory is proposed at a low-temperature process (≤ 450℃). The memory cell consists of a sputtered oxide-nitride-oxide (ONO) gate dielectric and Schottky barrier (SB) source/drain (S/D) junctions using nickel silicide. These components enable the ultra-low-temperature process to be successfully achieved with the ONO gate stacks that have a substrate temperature of room temperature and S/D junctions that have an annealing temperature of 200℃. The silicidation process was optimized by measuring the electrical characteristics of the Ni-silicided Schottky diodes. As a result, the Ion/Ioff current ratio is about 1.4×105 and the subthreshold swing and field effect mobility are 0.42 V/dec and 14 cm2/V·s at a drain voltage of −1 V, respectively.

Thin Film Transistor fabricated with CIS semiconductor nanoparticle

  • Kim, Bong-Jin;Kim, Hyung-Jun;Jung, Sung-Mok;Yoon, Tae-Sik;Kim, Yong-Sang;Choi, Young-Min;Ryu, Beyong-Hwan;Lee, Hyun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1494-1495
    • /
    • 2009
  • Thin Film Transistor(TFT) having CIS (CuInSe) semiconductor layer was fabricated and characterized. Heavily doped Si was used as a common gate electrode and PECVD Silicon nitride ($SiN_x$) was used as a gate dielectric material for the TFT. Source and drain electrodes were deposited on the $SiN_x$ layer and CIS layer was formed by a direct patterning method between source and drain electrodes. Nanoparticle of CIS material was used as the ink of the direct patterning method.

  • PDF

Diffusion and Thermal Stability Characteristics of W-B-C-N Thin Film (W-B-C-N 확산방지막의 특성 및 열적 안정성 연구)

  • Kim, Sang-Yoon;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.75-78
    • /
    • 2006
  • In case of contacts between semiconductor and metal in semiconductor circuits, they become unstable because of thermal budget. To prevent these problems, we use diffusion barrier that has a good thermal stability between metal and semiconductor. So we consider the diffusion barrier to prevent the increase of contact resistance between the interfaces of metals and semiconductors, and the increase of resistance and the reaction between the interfaces. In this paper we deposited tungsten boron carbon nitride (W-B-C-N) thin film on silicon substrate. The impurities of the $1000\;{\AA}-thick$ W-B-C-N thin films provide stuffing effect for preventing the inter-diffusion between metal thin films $(Cu-2000\;{\AA})$ and silicon during the high temperature $(700\~1000^{\circ}C)$ annealing process.

Characteristics of AlN thin film using RF Magnetron Sputtering (RF Magnetron Sputtering 법으로 증착된 AlN 박막의 특성)

  • Cho, In-Ho;Jang, Cheol-Yeong;Ko, Sung-Yong;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.509-512
    • /
    • 2001
  • Aluminum nitride(AlN) thin films were deposited on silicon substrates using RF magnetron sputtering at various deposition conditions and investigated the characteristics. It was used XRD, AES, SEM, and HP-4145B semiconductor parameter analyzer to analysis deposited AlN thin films. The deposition conditions for the good c-axis orientation were 100 W of RF power, $200^{\circ}C$ of substrate temperature and 15 mTorr of working pressure. The leakage current density was less then $1.3{\times}10^{-7}A/cm^{2}$. And it was also investigated the etching properties of deposited AlN thin films for application.

  • PDF

Characteristics of AIN thin film using RF Magnetron Sputtering (RF Magnetron Sputtering 법으로 층착된 AIN 박막의 특성)

  • 조인호;장철영;고성용;이용현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.509-512
    • /
    • 2001
  • Aluminum nitride(AIN) thin films were deposited on silicon substrates using RF magnetron sputtering at various deposition conditions and investigated the characteristics. It was used XRD, AES, SEM, and HP-4145B semiconductor parameter analyzer to analysis deposited AIN thin films. The deposition conditions for the good c-axis orientation were 100 W of RF power, 200$^{\circ}C$ of substrate temperature and 15 mTorr of working Pressure. The leakage current density was less then 1.3${\times}$10$\^$-7/ A/$\textrm{cm}^2$. And it was also investigated the etching properties of deposited AIN thin films for application.

  • PDF

Formation of Si Nanodot by Using SiNx Thin Films (SiNx 박막을 이용한 Si Nanodot의 형성)

  • Lee, Jang Woo;Park, Ik Hyun;Shin, Byul;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.768-771
    • /
    • 2005
  • The deposition of silicon nitride ($SiN_x$) thin films was carried out on $SiO_2/Si$ substrate at room temperature by reactive dc magnetron sputtering. The analysis of deposited $SiN_x$ films using x-ray photoelectron spectroscopy indicated that the composition of $SiN_x$ films was Si-rich. The deposited $SiN_x$ thin films were annealed by varying annealing temperature and time. X-ray diffraction (XRD) analysis was performed in order to examine the crystallization of Si in $SiN_x$ thin films. The optical and electrical properties of $SiN_x$ thin films were measured for the observation of Si nanodot. As a result, we observed the XRD peaks that might be the Si crystals. As the annealing time and annealing temperature increased, the photoluminescence intensity of $SiN_x$ films gradually increased. The capacitance-voltage characteristics of $SiN_x$ film measured before and after annealing indicated that the trap effect of electrons or holes occurred due to the existence Si nanodots in the $SiN_x$ thin films.