• 제목/요약/키워드: silicon asperity, tersoff potential

검색결과 2건 처리시간 0.016초

Friction and Wear Simulation of Suspended Silicon Asperity Moving over a Plate at Microscale

  • Cho, Sung-San;Kim, Jung-Soo;Park, Seung-Ho
    • International Journal of Safety
    • /
    • 제5권1호
    • /
    • pp.10-16
    • /
    • 2006
  • A suspended hemispherical silicon asperity moving over a silicon plate was simulated. The simulation results on friction and wear in the interface between the two can help obtain more durable miscroscale structures. Silicon structures were constructed with Tersoff three-body potential. Dependence of friction and wear of the asperity on both the atomic arrangement in the plate and the moving direction was investigated under the condition that the asperity is subject to the attractive normal force due to the plate. The results show that the variation of friction force with the movement of asperity, and the occurrence of adhesive wear are attributed to the formation and rupture of asperity, junction between the asperity and the plate. The friction force and wear are smaller when the asperity is incommensurate with the plate, and they also depend on the moving direction of the asperity over the plate.

실리콘 돌기의 응착마찰 분자동력학 시뮬레이션 (Molecular Dynamics Simulation of Adhesive Friction of Silicon Asperity)

  • 박승호;조성산
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.547-553
    • /
    • 2004
  • A hemispherical asperity moving over a flat plane is simulated based on classical molecular dynamics. The asperity and the plane consist of silicon atoms whose interactions are governed by the Tersoff three-body potential. The gap between the asperity and the plane is maintained to produce attractive normal force in order to investigate the adhesive friction and wear. The simulation focuses on the influence of crystallographic orientation of the contacting surfaces and the moving direction. It is demonstrated that the adhesive friction and wear are lower when crystallographic orientations of the contacting surfaces are different, and also depend on the moving direction relative to the crystal1ographic orientation.