• Title/Summary/Keyword: silicon Carbide

Search Result 748, Processing Time 0.032 seconds

A Review of SiCf/SiC Composite to Improve Accident-Tolerance of Light Water Nuclear Reactors (원자력 사고 안전성 향상을 위한 SiCf/SiC 복합소재 개발 동향)

  • Kim, Daejong;Lee, Jisu;Chun, Young Bum;Lee, Hyeon-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.161-174
    • /
    • 2022
  • SiC fiber-reinforced SiC matrix composite is a promising accident-tolerant fuel cladding material to improve the safety of light water nuclear reactors. Compared to the current zirconium alloy fuel cladding as well as metallic accident-tolerant fuel cladding, SiC composite fuel cladding has exceptional accident-tolerance such as excellent structural integrity and extremely low corrosion rate during severe accident of light water nuclear reactors, which reduces reactor core temperature and delays core degradation processes. In this paper, we introduce the concept, technical issues, and properties of SiC composite accident-tolerant fuel cladding during operation and accident scenarios of light water nuclear reactors.

Influence of Oxygen Annealing on Temperature Dependent Electrical Characteristics of Ga2O3/4H-SiC Heterojunction Diodes (산소 후열처리가 Ga2O3/4H-SiC 이종접합 다이오드의 온도에 따른 전기적 특성에 미치는 영향 분석)

  • Chung, Seung Hwan;Lee, Hyung Jin;Lee, Hee Jae;Byun, Dong Wook;Koo, Sang Mo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.138-143
    • /
    • 2022
  • We analyzed the influence of post-annealing on Ga2O3/n-type 4H-SiC heterojunction diode. Gallium oxide (Ga2O3) thin films were deposited by radio frequency (RF) sputtering. Post-deposition annealing at 950℃ in an Oxygen atmosphere was performed. The material properties of Ga2O3 and the electrical properties of the diodes were investigated. Atomic Force Microscopy (AFM), X-Ray Diffraction and Scanning Electron Microscope (SEM) images show a significant increase in the roughness and crystallinity of the O2-annealed films. After Oxygen annealing X-ray Photoelectron Spectroscopy (XPS) shows that the atomic ratio of oxygen increases which is related to a decrease in oxygen vacancy within the Ga2O3 film. The O2-annealed diodes exhibited higher on-current and lower leakage current. Moreover, the ideality factor, barrier height, and thermal activation energy were derived from the current-voltage curve by increasing the temperature from 298 - 434K.

4H-SiC bulk single crystal growth using recycled powder (재생 분말을 활용한 4H-SiC 벌크 단결정 성장)

  • Yeo, Im Gyu;Lee, Jae Yoon;Chun, Myong Chuel
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.169-174
    • /
    • 2022
  • This study is to verify the feasibility of SiC single crystal growth using recycled SiC powder. The fundamental physical properties such as particle size, shape, composition and impurities of the recycled powder were analyzed, and the sublimation behavior occurring inside the reactor were predicted using the basic data. As a result of comprehensive judgment, the physical properties of the recycled powder were suitable for single crystal growth, and single crystal growth experiments were conducted using this. 100 mm 4H-SiC single crystal ingot with a height of 25 mm was grown without polytype inclusion. In the case of micro-pipe density was 0.02 ea/cm2 and resistivity characteristics was 0.015~0.020 ohm·cm2, commercial level quality was obtained, but additional analysis related to dislocation density and stacking faults is required for device application.

Thermal and Rheological Characterizations of Polycarbosilane Precursor by Solvent Treatment (폴리카보실란 전구체의 용매 처리에 따른 열적 및 유변학적 특성 분석)

  • Song, Yeeun;Joo, Young Jun;Shin, Dong Geun;Cho, Kwang Youn;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • Polycarbosilane(PCS) is an important precursor for melt-spinning the silicon carbide(SiC) fibers and manufacturing ceramics. The PCS is a metal-organic polymer precursor capable of producing continuous SiC fibers having excellent performance such as high-temperature resistance and oxidation resistance. The SiC fibers are manufactured through melt-spinning, stabilization, and heat treatment processes using the PCS manufactured by synthesis, purification, and control of the molecular structure. In this paper, we analyzed the effect of purification of unreacted substances and low molecular weight through solvent treatment of PCS and the effect of heat treatment at various temperatures change the polymerization and network rearrangement of PCS. Especially, we investigated the complex viscosity and structural arrangement of PCS precursors according to solvent treatment and heat treatment through the rheological properties.

Advances in Power Semiconductor Devices for Automotive Power Inverters: SiC and GaN (전기자동차 파워 인버터용 전력반도체 소자의 발전: SiC 및 GaN)

  • Dongjin Kim;Junghwan Bang;Min-Su Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this paper, we introduce the development trends of power devices which is the key component for power conversion system in electric vehicles, and discuss the characteristics of the next-generation wide-bandgap (WBG) power devices. We provide an overview of the characteristics of the present mainstream Si insulated gate bipolar transistor (IGBT) devices and technology roadmap of Si IGBT by different manufacturers. Next, recent progress and advantages of SiC metal-oxide-semiconductor field-effect transistor (MOSFET) which are the most important unipolar devices, is described compared with conventional Si IGBT. Furthermore, due to the limitations of the current GaN power device technology, the issues encountered in applying the power conversion module for electric vehicles were described.

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

Novel Synthesis of MnO2-SiC Fiber-TiO2 Ternary Composite and Effective Photocatalytic Degradation with Standard Dyes

  • Latiful Kabir;Yeon Woo Choi;Yun Seo Shin;Yeon Ji Shin;Geun Chan Kim;Jun Hyeok Choi;Jo Eun Kim;Young Jun Joo;Kwang Youn Cho;Hyuk Kim;Je-Woo Cha;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.275-282
    • /
    • 2024
  • In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.

The effect of PVT process parameters on the resistance of HPSI-SiC crystal (PVT 공법의 공정 변수가 고순도 반절연 SiC 단결정의 저항에 미치는 영향)

  • Jun-Hyuck Na;Min-Gyu Kang;Gi-Uk Lee;Ye-Jin Choi;Mi-Seon Park;Kwang-Hee Jung;Gyu-Do Lee;Woo-Yeon Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.41-47
    • /
    • 2024
  • In this study, the resistance characteristics of semi-insulating SiC single crystals grown using the PVT method were investigated, considering the purity level of SiC source powders used in PVT growth and the cooling procedure after crystal growth. Two β-SiC powders with different purities were employed, and the cooling rate after growth was adjusted to achieve various resistance values. 4-inch HPSI-SiC ingots were grown using the PVT method, utilizing SiC powders with low nitrogen concentration and relatively high nitrogen concentration. These ingots were then subjected to different cooling procedures to modify the cooling rate. Transmission/absorption spectra and crystal quality of the grown crystals were analyzed through UV/VIs/NIR spectroscopy and X-ray rocking curve analysis, respectively. Additionally, electrical properties were investigated through non-contact resistivity analysis to identify the dominant factors influencing resistivity properties.

Method for the Assembly of a High-density Multi-channel Deformable Mirror for High Energy Lasers (고에너지 레이저용 고밀집 다채널 실리콘-카바이드 변형거울의 정밀 조립 방법)

  • Hyug-Gyo Rhee;Sunho Cho;Sihyun Kim;Jaehyun Lee;Pilseong Kang
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.170-174
    • /
    • 2024
  • A laser beam propagating in free space can be negatively affected by atmospheric turbulence. To overcome this and correct the wavefront error of the laser beam itself, a deformable mirror (DM), which is a key component of adaptive optics, is widely used. In this paper, a novel precision assembling method is suggested for a multi-channel high-density DM. The material of the mirror sheet of the DM is silicon carbide (SiC), and the actuator is a stacked-type lead-magnesium-niobate (Pb(Mg1/3Nb2/3)O3; PMN). To connect the mirror sheet and each actuator, a flexure is inserted. The flexure can make the DM operate with full strokes without the failure of adhesive. A series of jigs were designed and applied in order to assemble these three parts (the mirror sheet, actuators, and flexures) precisely. After assembly, the performance of the DM was also checked.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.