• Title/Summary/Keyword: silicide formation

Search Result 150, Processing Time 0.03 seconds

Reinvestigation on the silicide formation process (실리사이드 형성 과정에 대한 재 조명)

  • Nam, Hyoung-Gin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • Silicide formation process and the formation sequence were investigated in this study. It was postulated that the formation of the second silicide phase involves glass formation between the first silicide phase and Si given that a thin metal film is deposited on a Si substrate. The concentration of glass was assumed to be located where the free energy of the liquid alloy with respect to the first nucleated compound and solid Si (${\Delta}$G') is most negative. It was also mentioned that the glass concentration is close to the composition of the second phase in order to achieve the maximum energy degradation. It was shown that the minimum ${\Delta}$G' concentration can be estimated by interpolating the portion of the liquidus where the liquid alloy is in equilibrium with the two solid constituents, namely the first compound phase and Si, thereby forming a hypothetical eutectic.

  • PDF

Formation Temperature Dependence of Thermal Stability of Nickel Silicide with Ni-V Alloy for Nano-scale MOSFETs

  • Tuya, A.;Oh, S.Y.;Yun, J.G.;Kim, Y.J.;Lee, W.J.;Ji, H.H.;Zhang, Y.Y.;Zhong, Z.;Lee, H.D.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.611-614
    • /
    • 2005
  • In this paper, investigated is the relationship between the formation temperature and the thermal stability of Ni silicide formed with Ni-V (Nickel Vanadium) alloy target. The sheet resistance after the formation of Ni silicide with the Ni-V showed stable characteristic up to RTP temperature of $700\;^{\circ}C$ while degradation of sheet resistance started at that temperature in case of pure-Ni. Moreover, the Ni silicide with Ni-V indicated more thermally stable characteristic after the post-silicidation annealing. It is further found that the thermal robustness of Ni silicide with Ni-V was highly dependent on the formation temperature. With the increased silicidation temperature (around $700\;^{\circ}C$), the more thermally stable Ni silicide was formed than that of low temperature case using the Ni-V.

  • PDF

Ni Silicide Formation and the Crystalline Silicion Film Growth

  • Kim, Jun-Dong;Ji, Sang-Won;Park, Yun-Chang;Lee, Jeong-Ho;Han, Chang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.219-219
    • /
    • 2010
  • Silicides have been commonly used in the Si technology due to the compatibility with Si. Recently the silicide has been applied in solar cells [1] and nanoscale interconnects [2]. The modulation of Ni silicide phase is an important issue to satisfy the needs. The excellent electric-conductive nickel monosilicide (NiSi) nanowire has proven the low resistive nanoscale interconnects. Otherwise the Ni disilicide (NiSi2) provides a template to grow a crystalline Si film above it by the little lattice mismatch of 0.4% between Si and NiSi2. We present the formation of Ni silicide phases performed by the single deposition and the co-deposition methods. The co-deposition of Ni and Si provides a stable Ni silicide phase at a reduced processing temperature comparing to the single deposition method. It also discusses the Schottky contact formation between the Ni silicide and the grown crystalline Si film for the solar cell application.

  • PDF

Investigation of Ni Silicide formation for Ni/Cu contact formation crystalline silicon solar cells (Ni/Cu 금속 전극이 적용된 결정질 실리콘 태양전지의 Ni silicide 형성의 관한 연구)

  • Lee, Ji-Hun;Cho, Kyeong-Yeon;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.434-435
    • /
    • 2009
  • The crystalline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more. high-efficiency and low cost endeavors many crystalline silicon solar cells. the fabrication processes of high-efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/Ag contact, however, this contact formation processed by expensive materials. Ni/Cu contact formation is good alternative. in this paper, according to temperature Ni silicide makes, produced Ni/Cu contact solar cell and measured conversion efficiency.

  • PDF

Investigation on Suppression of Nickel-Silicide Formation By Fluorocarbon Reactive Ion Etch (RIE) and Plasma-Enhanced Deposition

  • Kim, Hyun Woo;Sun, Min-Chul;Lee, Jung Han;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • Detailed study on how the plasma process during the sidewall spacer formation suppresses the formation of silicide is done. In non-patterned wafer test, it is found that both fluorocarbon reactive ion etch (RIE) and TEOS plasma-enhanced deposition processes modify the Si surface so that the silicide reaction is chemically inhibited or suppressed. In order to investigate the cause of the chemical modification, we analyze the elements on the silicon surface through Auger Electron Spectroscopy (AES). From the AES result, it is found that the carbon induces chemical modification which blocks the reaction between silicon and nickel. Thus, protecting the surface from the carbon-containing plasma process prior to nickel deposition appears critical in successful silicide formation.

Interface effects on the annealing behavior of tungsten silicide (텅스텐 실리사이드 열처리 거동에 미치는 계면 효과)

  • 진원화;오상헌;이재갑;임인곤;김근호;이은구;홍해남
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.6
    • /
    • pp.374-381
    • /
    • 1997
  • We have studied the effect of the interface between tungsten silicide and polysilicon the silicide reaction. The results showed that the cleaning of the silicon surface prior to the deposition of tungsten silicide affected the interface properties, thereby leading to the difference in the resistivity and surface morhpology of tungsten silicide. Compared with HF cleaning, the use of SCl cleaning yielded higher resistivity of tungsten silicide at the low anneal temperature (up to $900^{\circ}C$). However, furtherature to $1000^{\circ}C$ reduced the resistivity significantly, similar to that obtained with HF cleaning. It was also observed that the annealing of WSix/HF-cleaned poly-si allowed the formation of bucking weve (partially decohesion area) on the surface. In contrast, the use of SCl celaning did not produce the buckling waves on the surface. Also the presence of 200$\AA$ -thick TiW between tungsten silicide and HF-cleaned poly-Si effectively prevented the formation of the waves. However, high-temperature annealing of WSix/200A-TiW/Poly-Si allowed the excess silicon in tungsten silicide to precipitate inside the silcide, causing the slight increase of the resistivity after annealing at $1050^{\circ}C$.

  • PDF

The Study of Formation of Ti-silicide deposited with Composite Target [II] (Composite Target으로 증착된 Ti-silicide의 현성에 관한 연구[II])

  • Choi, Jin-Seog;Paek, Su-Hyon;Song, Young-Sik;Sim, Tae-Un;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.191-197
    • /
    • 1991
  • The surface roughnesses of titanium silicide films and the diffusion behaviours of dopants in single crystal and polycrystalline silicon substrates durng titanium silicide formation by rapid thermal annealing(RTA) of sputter deposited Ti-filicide film from the composite $TiSi_{2.6}$ target were investigated by the secondary ion mass spectrometry(SIMS), a four-point probe, X-ray diffraction, and surface roughness measurements. The as-deposited films were amorphous but film prepared on single silicon substrate crystallized to the orthorhombic $TiSi_2$(C54 structure) upon rapid thermal annealing(RTA) at $800^{\circ}C$ for 20sec. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into titanum silicide layers during annealing. Most of the implanted dopants piled up near the titanium silicide/silicon interface. The surface roughnesses of titanium silicide films were in the range between 16 and 22nm.

  • PDF

"A Study on the formation of Cobalt Silicide and its Growth Rate by Rapid Thermal Annealing(RTA)" (RTA를 이용한 Cobalt Silicide의 형성 및 Growth Rate d에 관한 연구)

  • Kang, Eu-S.;Kim, H.W.;Hwang, Ho-J.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.387-390
    • /
    • 1988
  • The increases in the packing density and the resulting shrinkage of silicon integrated circuit dimensions led to the investigation and successful of the deposited silicide layers as the gate and interconnection and contact metallization. In this paper evaporated Co films on n-Si have been rapid thermal annealed in $N_2$ambient at temperature of $400^{\circ}C-1000^{\circ}C$. The Co silicide formation is characterized by sheet resistance (4PP). Also, silicide growth rate and its reproductivity has been examined by SEM.

  • PDF

Process Control of Titanium Silicide Formation Using RTP (RTP를 사용한 타이타늄 실리사이드 형성의 공정 조절)

  • 이용재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.5
    • /
    • pp.399-405
    • /
    • 1990
  • Rapid Thermal Process(RTP) has been used to precisely control and study the reaction rate for the formation of refractory titanuium silicide. Samples were prepared by sputtering deposition layer of titanium on n-type, poly-deposit silicon wafers. The process were then sujected to a matrix of rapid time-temperature profile under nitrgen, argon gas ambient to precisely control the silicide formation. Reacted films were analyzed by the sheet resistance measursrement, SEM, ASR and X-ray diffraction. Results were shown that the resistivity of the silicide films are below 20u-cm and the thickness of silicide films are about two times than that of as-deposited titanium films. Silicidation ambient was likely to happen at the same tamperature-time condition for argon and nitrogen gas.

  • PDF