• Title/Summary/Keyword: silicate glasses and melts

Search Result 8, Processing Time 0.017 seconds

On the Structure and the Extent of Disorder in Non-crystalline Silicates at High Pressure: 2 Dimensional Solid-state NMR Study (2차원 고상 핵자기 공명기를 이용한 비정질 규산염의 고압구조 및 무질서도에 대하여)

  • Lee Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • The recent development and advances in 2 dimensional solid-state NMR, particularly, triple quantum (3Q) MAS NMR yield much improved resolution compared with conventional 1 dimensional MAS NMR, allowing us to study the distributions of cations and anions in the non-crystalline silicate glasses and melts. Here, we present the recent progress made by 3QMAS NMR spectra of silicate glasses quenched from melts at pressures up to 10 GPa in a multi-anvil apparatus, revealing previously unknown details of structures of covalent oxide glasses and melts at high pressure.

Effect of Boron Content on Atomic Structure of Boron-bearing Multicomponent Oxide Glasses: A View from Solid-state NMR (비정질 소듐 보레이트와 붕소를 함유한 다성분계 규산염 용융체의 붕소의 함량에 따른 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, A Chim;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.155-165
    • /
    • 2016
  • Understanding the effect of boron content on atomic structures of boron-bearing multicomponent silicate melts is essential to reveal the atomistic origins of diverse geochemical processes involving silica-rich magmas, such as explosive volcanic eruption. The detailed atomic environments around B and Al in boron-bearing complex aluminosilicate glasses yield atomistic insights into reactivity of nuclear waste glasses in contact with aqueous solutions. We report experimental results on the effect of boron content on the atomic structures of sodium borate glasses and boron-bearing multicomponent silicate melts [malinkoite ($NaBSiO_4$)-nepheline ($NaAlSiO_4$) pseudo-binary glasses] using the high-resolution solid-state NMR ($^{11}B$ and $^{27}Al$). The $^{11}B$ MAS NMR spectra of sodium borate glasses show that three-coodrinated boron ($^{[3]}B$) increases with increasing $B_2O_3$ content. While the spectra imply that the fraction of non-ring species decreases with decreasing boron content, peak position of the species is expected to vary with Na content. Therefore, the quantitative estimation of the fractions of the ring/non-ring species remains to be explored. The $^{11}B$ MAS NMR spectra of the glasses in the malinkoite-nepheline join show that four-coordinated boron ($^{[4]}B$) increases as $X_{Ma}$ [$=NaBSiO_4/(NaBSiO_4+NaAlSiO_4)$] increases while $^{[3]}B$ decreases. $^{27}Al$ MAS NMR spectra of the multicomponent glasses confirm that four-coordinated aluminum ($^{[4]}Al$) is dominant. It is also observed that a drastic decrease in the peak widths (full-width at half-maximum, FWHM) of $^{[4]}Al$ with an addition of boron ($X_{Ma}=0.25$) in nepheline glasses. This indicates a decrease in structural and topological disorder around $^{[4]}Al$ in the glasses with increasing boron content. The quantitative atomic environments around boron of both binary and multicomponent glasses were estimated from the simulation results of $^{11}B$ MAS NMR spectra, revealing complex-nonlinear variation of boron topology with varying composition. The current results can be potentially used to account for the structural origins of the change in macroscopic properties of boron-bearing oxide melts with varying boron content.

Effect of Composition on Isotropic Chemical Shift of Na Silicate and Aluminosilicate Glasses Using Solid State NMR (고상 핵자기공명 분광분석을 이용한 비정질 Na 규산염 및 알루미노규산염 내 조성에 따른 등방성 화학적 차폐 변화 규명)

  • Park, Sun Young;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • Probing the Na environments in Na silicate and aluminosilicate glasses is essential to the macroscopic properties of melts in the Earth. In particular, exploring the atomic structure of Na silicate and aluminosilicate glasses reveals Na-O distance, which plays an important role in transport properties of melts. Here we report the local environment around Na using $^{23}Na$ magic angle spinning (MAS) NMR. We also obtain $^{23}Na$ isotropic chemical shift (${\delta}_{iso}$) of Na silicate and aluminosilicate glasses with varying composition using Dmfit program. The Q mas 1/2 model simulates the experimental results with three simulated peaks while the CzSimple model simulates with one peak. The ${\delta}_{iso}$ decreases with increasing $SiO_2$ content in Na silicate and aluminosilicate glasses. The ${\delta}_{iso}$ increases with increasing $Na_2O$ content in Na-Ca silicate and Na aluminosilicate glasses when the $SiO_2$ content is fixed. Considering the ${\delta}_{iso}$ of Na aluminosilicate glasses available in the previous studies, together with the current simulation results, we confirm that the ${\delta}_{iso}$ has positive correlation with Al / (Al + Si). Those experimental results were reproduced better using Q mas 1/2 model. The disorder of Na in Na silicate and aluminosilicate glasses can be revealed through the simulation of 1D $^{23}Na$ MAS NMR spectra using Dmfit program in a short time.

Corrosion of Refractory in Glass Melts for Plasma Display Panel Substrate (Plasma Display Panel용 기판 유리용융체의 내화물 침식)

  • Kim, Ki-Dong;Jung, Hyun-Su;Kim, Hyo-Kwang
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.65-69
    • /
    • 2007
  • For self-developed alkali-alkaline earth-silicate and commercial glass melts for plasma display panel substrate, the corrosion behavior of fused casting refractory consisting of $Al_2O_3-ZrO_2-SiO_2$ was examined at the temperature corresponding to $10^2\;dPa{\cdot}s$ of melt viscosity by static finger methode. The corroded refractory specimens showed a typical concave shape due to interfacial convection of melts at their flux line. However, the corrosion thickness by commercial glass melts was $6\sim10$ times comparing to that by the self?developed melts. From the view point of the glass composition and the role of alkaline earth in glass network, it was discussed the effect of alkali/alkaline earth diffusion and temperature on the refractory corrosion.

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

A Solid-State NMR Study of Coordination Transformation in Amorphous Aluminum Oxide: Implication for Crystallization of Magma Ocean (고상 NMR을 이용한 비정질 알루미나의 상전이 연구: 마그마 바다 구성 용융체의 결정화 과정의 의의)

  • Ryu, Saebom;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.283-293
    • /
    • 2012
  • In order to have better insights into the chemical differentiation of Earth from its magma ocean phase to the current stratified structure, detailed information of crystallization kinetics of silicate melts consisting of the magma ocean is essential. The structural transitions in oxide glasses and melts upon crystallization provide improved prospects for a systematic and quantitative understanding of the crystallization processes. Here, we report the $^{27}Al$ 3QMAS NMR spectra for sol-gel synthesized $Al_2O_3$ glass with varying temperature and annealing time. The NMR spectra for the amorphous $Al_2O_3$ show well-resolved Al coordination environments, characterized with mostly $^{[4,5]}Al$ and a minor fraction of $^{[6]}Al$. The fraction of $^{[5]}Al$ in the alumina phase decreases with increasing annealing time at constant temperature. The NMR results of $Al_2O_3$ phases also imply that multiple processes (e.g., crystallization and/or changes in structural disorder within glasses) could involve upon its phase transition. The current results and method can be useful to understand crystallization kinetics of diverse natural and multi-component silicate glasses and melts. The potential result may yield atomic-level understanding of Earth's chemical evolution and differentiation from the magma ocean.

A Solid-state 27Al MAS and 3QMAS NMR Study of Basaltic and Phonolitic Silicate Glasses (현무암과 포놀라이트 비정질 규산염의 원자구조 차이에 대한 고상핵자기 공명 분광분석 연구)

  • Park, Sun Young;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • While the macroscopic properties and eruption style of basaltic and phonolitic melts are different, the microscopic origins including atomic structures are not well understood. Here we report the atomic structure differences of glass in diopside-anorthite eutectic composition (basaltic glass) and phonolitic glass using high-resolution 1D and 2D solid-state Nuclear Magnetic Resonance (NMR). The $^{27}Al$ MAS NMR spectra for basaltic glass and phonolitic glass show that the full width at half maximum (FWHM) of Al for basaltic glass is about twice than phonolitic glass, suggesting the topological disorder of basaltic magma is larger than that of phonolitic magma. The $^{27}Al$ 3QMAS NMR spectra for basaltic glass and phonolite glass show much improved resolution than the 1D MAS NMR, resolving Al and Al. Approximately 3.3% of Al is observed for basaltic glass, demonstrating the configurational disorder of basaltic magma is larger than phonolitic magma. This result confirms that the topological disorder of Al in basaltic glass is larger than that of phonolitic glass. The observed structural differences between basaltic glass and phonolitic glass can provide an atomistic origin for change of the macroscopic properties with composition including viscosity.

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations (양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석)

  • Kim, Yong-Hyun;Yi, Yoo Soo;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.