• Title/Summary/Keyword: silicate($SiO_2$)

Search Result 432, Processing Time 0.022 seconds

Effects of NaOH and Na2SiO3·9H2O Addition on Strength Development of Class F Fly Ash-Mortar (F급 플라이 애쉬-모르타르의 강도발현에 대한 NaOH과 Na2SiO3·9H2O 첨가의 영향)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Sang-Ho;Kang, Hee-Bog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.261-269
    • /
    • 2005
  • The object of this research is to produce alkali activated fly ash-cement using low calcium fly ash as substitute for portland cement. The experimental program included activation of fly ash by a strong base(NaOH) at different concentration, temperature, and liquid-to-fly ash ratios. To achieve for higher compressive strength of the hardened product, sodium meta silicate is added to the alkaline solution. From the factors considered on strength development, the ratio of liquid/fly ash, the activator concentration and temperature always result to be significative factors. The optimization studied show that the alkaline solution concentration of $NaOH(210g)+Na_2SiO_3{\cdot}9H_2O(30g)+H_2O=1L$ at $50^{\circ}C$ produces the best alkali activation effect for the low calcium fly ash. SEM and XRD patterns showed that the components of alkali-activated fly ash consist mainly of mullite, quartz and amorphous aluminosilicate.

Ultrasonic Synthesis of Silica Powder Using Emulsion Method (에멀젼법을 이용한 실리카 분말의 초음파 합성)

  • Lee, S.G.;Kim, H.S.;Kang, B.S.;Seo, G.S.;Park, S.S.;Park, H.C.
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.355-359
    • /
    • 2006
  • Fine silica powders were synthesized via w/o emulsion method using sodium silicate, ammonium sulfate, Triton N-57, and cyclohexane as silica source, precipitating agent, surfactant, and oil phase, respectively. The powders were prepared under a conventional process and an ultrasonic process using the same reactants at room temperature for 1 hr varying the concentration of $Na_2SiO_3$ solution and the mol ratio of $H_2O$/surfactant, respectively. The particle size of the silica powder was reduced with decreasing the concentration of sodium silicate solution and with increasing the mol ratio of $H_2O$/surfactant under with and without ultrasounds. The size of powder with ultrasounds was smaller than that without ultrasounds, which indicates that the application of ultrasound in the synthesis of silica powder is an efficient way to reduce particle size.

A Study on Cementation Reaction Mechanism for Weathered Granite Soil and Microbial Mixtures (화강풍화토와 미생물 혼합물의 고결 반응 메카니즘)

  • Oh, Jongshin;Lee, Sungyeol;Kim, Jinyung;Kwon, Sungjin;Jung, Changsung;Lee, Jaesoo;Lee, Jeonghoon;Ko, Hwabin;Baek, Wonjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.103-110
    • /
    • 2019
  • The purpose of this study is to investigate the reaction mechanism of soil and bacteria solution by various mixing ratios. For this purpose, in order to understand the reaction mechanisms of microorganisms and weathered granite soil, the tests were carried out under various mixing ratios additives such as soil, bacteria solution, $Ca(OH)_2$ and fixture. The test results from this study are summarized as follows. Firstly, the reaction between the bacteria solution and fixture produced a precipitate called vaterite, a type of silicate and calcium carbonate. Secondly, as a result of SEM analysis, the resulting precipitates generated from the test results using the specimens with various mixing ratios except SW condition and the irregular spherical microscopic shapes were formed in the size of $150{\mu}m$ to $20{\mu}m$. In addition, it can be seen that the bacteria solution and the fixture reacted between the granules to form an adsorbent material layer on the surface, and the microorganisms had a biological solidifying effect when the pores are combined into hard particles. Finally, The XRD analysis of the sediment resulting from the reaction between the microorganism and the deposit control agent confirmed the presence of a type of calcium carbonate ($CaCO_3$) vaterite, which affects soil strength formation, as well as silicate($SiO_2$).

Effect of alkaline activators on the fresh properties and strength of silico-manganese fume-slag activated mortar

  • Nasir, Muhammad;Johari, Megat Azmi Megat;Yusuf, Moruf Olalekan;Maslehuddin, Mohammed;Al-Harthi, Mamdouh A.
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.403-416
    • /
    • 2020
  • This study investigated the effect of alkaline activators - NaOHaq (NH) (NH: 0-16 M) and Na2SiO3aq (NS) (NS/NH: 0-3.5) in the synthesis of silico-manganese fume (SMF) and ground blast furnace slag (BFS) blended alkali-activated mortar (AASB). The use of individual activator was ineffective in producing AASB of sufficient fresh and hardened properties, compared to the synergy of both activators. This may be attributed to incomplete dissolution and condensation of oligomers required for gelation of the binder. An inverse relationship was noted among the fresh properties and the NH concentration or NS/NH ratio. This was influenced by the dissolution and condensation of silicate monomers under polymerization process. The maximum 28-day strength of ~45 MPa, setting time of 60 min and flow of 182 mm was obtained with the use of combined activators (10M-NH and NS/NH=2.5). The combined activators at NS/10M-NH=2.5 constituted SiO2/Na2O, H2O/Na2O and H2O/SiO2 molar ratio of 1.61, 17.33 and 10.77, respectively. This facilitated the formation of C-S-H, C/K-A-S-H and C-Mn-S-H in the framework together with an increase in the crystallinity due to more silicate re-organization within the aluminosilicate chain. On comparison of the high concentrated with mild alkali synthesized product, it revealed that the concentration of OH- and Si monomers together with alkali metals influenced the dissolution of precursors and embedment of the constituent elements in the polymeric matrix. These factors eventually contributed to the microstructural densification of the mortar prepared with NS/10M-NH=2.5 thereby enhancing the compressive strength.

Phase Formation of $BaTiO_3$ Thin Films by Sputtering (Sputtering법에 의한 $BaTiO_3$ 박막의 상형성에 관한 연구)

  • 안재민;최덕균;김영호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.657-663
    • /
    • 1993
  • BaTiO3 sputtering targets of 3 inch diameter were prepared by sintering the CIP (Cold Isotatic Pressing) compacts at 136$0^{\circ}C$ for 3hrs. The apparent density and grain size were 97% and 30${\mu}{\textrm}{m}$, respectively. After BaTiO3 films were deposited on Si and Pt/Ti/SiO2/Si substrates using these targets, films were annealed at various conditions and the crystallization behavior, reaction with the substrate and the electrical properties were investigated. The films on both substrates required 5~20hrs furnace annealing for crystallization at the temperatures from $600^{\circ}C$ to 80$0^{\circ}C$. For the films on Si substrate, interaction between the film and the substrate was suppressed upt o $700^{\circ}C$ for 10 hrs and the relative dielectric constant was 30. As the annelaing temperature and time were increased, the relative dielectric constants of the films decreased due to the formation of silicate phases through the reaction with the substrate. For the BaTiO3 films on Pt/Ti/SiO2/Si substrate, the reaction with the substrate was further reduced when the annealing condition was identical to that for Si substrate, but the reaction between the layers in Pt electrode took place above $700^{\circ}C$. When the films were annealed at $600^{\circ}C$ where the stability of Pt electrode was sustained, relative dielectric constant was increased to 110 since the reaction with substrate was effectively reduced even for a longer annealing time and the crystallization was enhanced.

  • PDF

Investigation of $WSi_2$ Gate for the Integration With $HfO_3$gate oxide for MOS Devices (MOS 소자를 위한 $HfO_3$게이트 절연체와 $WSi_2$게이트의 집적화 연구)

  • 노관종;양성우;강혁수;노용한
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.832-835
    • /
    • 2001
  • We report the structural and electrical properties of hafnium oxide (HfO$_2$) films with tungsten silicide (WSi$_2$) metal gate. In this study, HfO$_2$thin films were fabricated by oxidation of sputtered Hf metal films on Si, and WSi$_2$was deposited directly on HfO$_2$by LPCVD. The hysteresis windows in C-V curves of the WSi$_2$HfO$_2$/Si MOS capacitors were negligible (<20 mV), and had no dependence on frequency from 10 kHz to 1 MHz and bias ramp rate from 10 mV to 1 V. In addition, leakage current was very low in the range of 10$^{-9}$ ~10$^{-10}$ A to ~ 1 V, which was due to the formation of interfacial hafnium silicate layer between HfO$_2$and Si. After PMA (post metallization annealing) of the WSi$_2$/HfO$_2$/Si MOS capacitors at 500 $^{\circ}C$ EOT (equivalent oxide thickness) was reduced from 26 to 22 $\AA$ and the leakage current was reduced by approximately one order as compared to that measured before annealing. These results indicate that the effect of fluorine diffusion is negligible and annealing minimizes the etching damage.

  • PDF

Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments

  • Kim, Myung Sook;Kim, Yoo Hak;Park, Seong Jin;Lee, Chang Hoon;Yun, Sun Gang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • The objectives of this study were to monitor the changes in soil solution nutrients and to evaluate their effect on rice uptake and yield. The changes of chemical characteristics of paddy soil solution were examined from the 58th fertilization experiment in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (No fert.), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPKC) and inorganic fertilizer plus silicate and lime fertilizer as a soil amendment (NPKCLS). The fertilizers were added at rates of standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), potassium ($K_2O$), and sililcate ($SiO_2$) were applied at rates of $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, and $7.5Mg\;ha^{-1}$ respectively and lime was applied to neutralize soil acidity until 6.5. Average Electrical Conductivity (EC) of soil solution in NPKCLS and NPKC ranged from 1.16 to $2.00dS\;m^{-1}$. The $NH{_4}^+$ and $K^+$ levels in NPKCLS and NPKC were higher than that of the other treatments, due to high supply power of rice straw compost. The content of $H_3SiO{_4}^-$ was higher in NPKCLS because of silicate application. The dominant ions in soil solution were $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ among cations and $HCO{_3}^-$, $SO{_4}^{2-}$, and $Cl^-$ among anions in all treatments. The continuous application of inorganic fertilizers plus rice straw compost (NPKC) and silicate fertilizer (NPKCLS) led to the changes of various chemical composition in soil solutions. Also, they had a significant impact on the improvement of rice inorganic uptake and grain yield. Especially, inorganic uptake by rice in NPKC and NPKCLS significantly increased than those in NPK plot; 14~46% for T-N, 32~36% for P, 43~57% for K, and 45~77% for Si. Therefore, the combined application of inorganic fertilizers with organic compost as a soil amendment is considered as the best fertilization practice in the continuous rice cropping for the improvement of crop productivity and soil fertility.

The Study on the Strength Improvement $CO_2$ Mold Bonded With High Mole-Ratio Sodium Silicates (고(高)MOLE비(比)의 규산(珪酸)소다를 사용(使用)한 $CO_2$ 주형(鑄型)의 강도개선(强度改善)에 관(關)한 연구(硏究))

  • Kim, Bong-Wan;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.7 no.4
    • /
    • pp.366-379
    • /
    • 1987
  • The influences of some factors on the variation of compression strength of $CO_2$ process were investigated with an attention given to use of high $SiO_2\;/Na_2O$ silicate, addition of organics and gassing operation. 1) Higher ratio binder offers faster rates of hardening with lower $CO_2$ consumption requiring more concentration for a good strength development. A mixture containing 4 percent of 2.7:1 ratio silicate produces the strength above $8kg\;/\;cm^2$ after 80 seconds gassing, but 5% and 6% respectively of 3.0:1 and3.3:1 ratio silicate are necessary to achieve equivalent levels of strength. 2) The correct water content in sand mixtures containing higher ratio silicates is necessary for the better strength properties to be obtained. The addition of 1% water to the sand mixtures bonded with 5%,3:1 ratio and 6%,3.3:1 ratio silicates maintains near-maximum strength on extended gassing. 3) When higher ratio silicates with 3:1 and 3.3:1 ratios are used,the addition of organic additives such as oil, sucrose and polyol results in considerable changes in strength. The presence of 1.0 to 1.5 percent of polyol produces a noticiable improvement 4) Gas diluted with air raises the efficiency of gas utilization. When gas contains 50 percent $CO_2$, the efficience is significantly increased with the best strength in the silicates having high ratios of 3:1 and 3.3:1. 5) The strength of molds is liable to change on storage with the reduction in water content. The magnitude of the strength change is determinded with the mole ratio. The presence of polyol in the mixture with 3.3:1 ratio silicate has a pronounced effect on maintaining the gassed strength.

  • PDF

Evaluate the Suitability of MC3T3 Cells to Antibacterial Ag-30CaO·70SiO2 Gel (항균성 Ag-30CaO·70SiO2 Gel의 MC3T3 세포적합성에 관한 연구)

  • Yoon, Geum-Jae;Ryu, Jae-Kyung;An, Eung-Mo;Kim, Yun-Jong;Kim, Taik-Nam;Noh, In-Sup;Cho, Sung-Beck
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.671-676
    • /
    • 2014
  • It is known that bones get damaged by accidents and aging. Since the discovery of Bioglass, various kinds of ceramics have been also found to bond to living bone; some of these ceramics are already being clinically used as bone-repairing materials. In the present study, antibacterial calcium silicate gel ($Ag-30CaO{\cdot}70SiO_2$ gel) was prepared by sol-gel method in order to control the microstructure, which is related to the dissolution rate and induction period of apatite formation in body environment. In addition, biological $Ag-30CaO{\cdot}70SiO_2$ is tested. This was done to impart antimicrobial activity to the $30CaO{\cdot}70SiO_2$. Ag ion was added during sol-gel synthesis to replace the $H_2O$ added during the making of the $30CaO{\cdot}70SiO_2$ gel, which has silver solutions of various concentration. After the sol-gel process, 1N-$HNO_3$ solution was used to wash the gel when synthesizing the gel, in order to maintain the porous structure and remove PEG, water soluble polymers. Then, the apatite forming ability of the sol-gel derived CaO-$SiO_2$ gels was investigated using simulated body fluid (SBF), which had almost the same ion concentration as that of human blood plasma. The gels were analyzed by FT-IR spectroscopy, SEM observation, XRD, and fluorescent microscopy. The apatite was successfully created even after washing the gel; apatite is present in an amorphous state, and was found to affect the concentration of the Ag ion in cells in MC3T3 live & dead assay results. From these results, it is suggested that a good material that can be used to repair defects of nature bone is $Ag-30CaO{\cdot}70SiO_2$ gel.

Hydrothermal Kinetics and Mechanisms of Lime and Quartz Used Solid State Reaction Equations (고상반응식을 이용한 석회-석영의 수열반응속도와 반응메카니즘)

  • Lim, Going
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.223-233
    • /
    • 1998
  • The kinetic and mechanism of the hydrothermal reaction between lime and quartz used solid state reaction equations have been investigated. Hydrothermal reaction on the starting materials was carried out in an autoclave that quartz mixed with calcium hydroxide in CaO/$SiO_2$ ratio of 0.8-1.0 for 0.5-8 hour at saturated steam pressure of $180-200^{\circ}C$. The rate of reaction was given from the ratio of uncombined lime and quartz content to the total lime and quartz content. The rate of reaction was obtained the results by the Jander's equation $[1-(1-\alpha)^{1/3}]^N=Kt$. The reaction of lime is controlled mainly by the dissolution such as N=1, and the reaction of quartz is controlled mostly by the diffusion such as $N\risingdotseq2$. The rate of hydrothermal reaction in the calcium silicate hydrates system is suggested to be determined generally by the mass transfer through the product laver formed around the reactant particles. The rate equation for whole hydrothermal reaction is shown that it is converted into the rate determining step by the diffusion from the boundary reaction such as approximately $N=1-2$.

  • PDF