• Title/Summary/Keyword: silicalite

Search Result 32, Processing Time 0.023 seconds

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.

A Kinetic Study of Allylchloride Epoxidation using Titanium Silicalite-1 Catalyst (Titanium Silicalite-1 촉매를 이용한 Allylchloride 에폭시화 반응: 속도론적 고찰)

  • Yang, Seung-Tae;Choi, Jung-Sik;Kwon, Young-Chul;Lee, Sang-Wook;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.142-146
    • /
    • 2008
  • Titanium silicalite-1 catalyst was prepared using a $SiO_2-TiO_2$ xerogel and applied to allylchloride (ALC) epoxidation by $H_2O_2$ as oxidant in a batch reactor. The reaction temperature was varied from 25 to $55^{\circ}C$, and the concentrations of ALC and $H_2O_2$ were changed from 0.2 to 3 M and from 0.2 to 1.5 M, respectively. The kinetic data obtained were applied to the power rate law, Eley-Rideal, and a Langmuir-Hinshelwood model, and power rate law fits the experimental data best. Activation energy was 27.9 kJ/mol, and the reaction orders with respect to $H_2O_2$ and ALC were determined to be 0.41 and 0.52, respectively.

Preparation of nanosized TPA-silicalite-1 with various crystallization promoters (다양한 결정화 촉진제를 이용한 나노크기의 TPA-silicalite-1 제조)

  • 김호동;정상진;김명훈;김영희;김수룡;이영무
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.48-48
    • /
    • 2003
  • 미세기공(microporous)을 가진 제올라이트는 다양한 유기질 분리의 촉매제 및 광학, 화학 센서, 기체 분리 등의 고기능 소재로서 크게 주목받고 있으며, 비표면적의 증가, 새로운 기능의 발현 둥으로 최근 들어 나노크기를 갖는 제올라이트 합성에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 기체 분리에 응용하기 위한 제올라이트 분리막 개발에 앞서 분리막 제조에 유리할 것으로 판단되어지는 적합한 크기와 형상을 갖춘 나노크기의 제올라이트를 합성하였으며 그 특성을 분석하였다. 출발물질로서 실리카 원으로는 TEOS, LUDOX AS-40, Cab-O-SIL 등을 사용하였으며, 템프레이트(TPAOH)와 함께 특정조성의 TPAOH/SiO$_2$,/$H_2O$ 겔을 만들었다. 합성시간을 단축할 수 있는 방법의 연구로서 저온하의 2단계 온도 변화법을 적용하였으며, 결정성장속도의 향상을 목적으로 NaH$_2$PO$_4$, H$_2$SO$_4$, NH$_4$OH 등의 결정화 촉진제로 사용하여 수열합성법으로 Silicalite-1를 합성하였다.

  • PDF

Preparation of Oriented MFI Zeolite Membranes (배향된 MFI 제올라이트 박막의 제조)

  • Song, Kyeong-Keun;Ha, Kwang
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.243-247
    • /
    • 2006
  • MFI zeolite membranes were prepared on anodic alumina (Anodisc) as support. First, silicalite-1(${\approx}1.2{\mu}m$) seed crystals were attached to the surface of the support via chemical bonding, and the a- and b-axis oriented zeolite membranes could be synthesized on the support coated with the monolayer of the seed crystals by secondary growth hydrothermal synthesis. The zeolite membranes prepared were characterized using scanning electron microscope and analyzed by X-ray diffraction.

CNDO/2 MO Calculations for Catalytic Acidity of V-silicalite (실리카에 담지된 바나듐 촉매의 산성도에 대한 CNDO/2 분자궤도론적 계산)

  • Kim, Myung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.357-360
    • /
    • 1994
  • The CNDO/2 calculations have been applied on cluster models for the representative active sites in V-silicalite to get Wiberg bond orders, LUMO energies and total energies. The B acidities of suggested models were investigated in terms of O-H bond orders. And the calculated LUMO energies showed the L acidities of the active sites. The structural stabilities of cluster models were also explained in terms of total energies.

  • PDF

Effect of the pH Value of Seed Coating Solution on Microstructure of Silicalite-1 Zeolite Separation Layer Grown on α-Alumina Support (종결정 코팅용액 pH 값이 α-알루미나 지지체 표면에 성장하는 Silicalite-1 제올라이트 분리층의 미세구조에 미치는 영향)

  • Hu, Sigui;Kim, Min-Zy;Lee, Du-Hyoung;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.422-430
    • /
    • 2015
  • The present study announces that the pH value of seed coating solution makes a significant effect on the microstructure of silicalite-1 zeolite layer formed on ${\alpha}$-alumina support. Seed with an average diameter of 75 nm was dispersed in ethanol to prepare three kinds of seed coating solutions with different pH values, and dip-coated on the support. The pH value was controlled to be 2.2, 7.0, and 9.3, respectively. In the secondary growth process, pH 7 seed solution resulted an uniform, 3 to $4{\mu}m$ thick, completely covered, and 100 nm grained silicalite-1 zeolite separation layer. The uniformity and completeness were explained by a uniform, closely packed, multi-layered, and completely covered seed coating in the pH 7 condition. In the condition, ${\alpha}$-alumina support and seed are oppositely charged: support is positively charged (8.4 mV) and seed, negatively (-1.7 mV). The opposite charging induced a strong electrostatic attraction between seed and support, which made the good seed coating state. On the other hand, pH 2.2 and pH 9.3 seed solutions resulted non-uniform, partially covered, and around $1{\mu}m$ grained zeolite separation layer, since seed and support are the same sign charged in the conditions. The same sign charging induced a strong electrostatic repulsion between seed and support which caused a low coverage of seed. It could be concluded that the pH value of seed coating solution is a key parameter to determine the microstructure of silicalite-1 zeolite separation layer.

Silicalite에 담지된 백금촉매의 특성 연구

  • 백승우;안도희;이한수;강희석;정흥석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.1047-1051
    • /
    • 1995
  • 수소동위원소의 분리공정은 월성원자력발전소의 보충용 중수제조공정에 필수적이며 백금촉매를 이용한 교환반응공정이 가장 경제적인 것으로 알려져 있다. 본고에서는 백금촉매 개발의 일환으로 담체로서 실리카라이트를 제조하여 결정성을 X선 회절분석기를 이용하여 측정하였으며 이 담체에 일반적인 함침법으로 백금을 담지시켜 처리한 Pt/Silicalite 촉매의 백금분산도를 수소 흡착법을 이용하여 측정하였다. 측정실험 결과 다공성의 실리카라이트가 제조되었고 일반적인 함침법에 의해 제조된 촉매의 백금분산도는 매우 낮음을 확인하였다.

  • PDF

Synthesis and Characterization of Methyltriethoxysilyl-Mediated Mesoporous Silicalites

  • Rabbani, Mohammad Mahbub;Oh, Weon-Tae;Nam, Dae-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.119-122
    • /
    • 2011
  • A series of mesoporous silicalites was synthesized using different compositions of tetraethylorthosilicate and methyltriethoxysilane (MTES) as the silica source. Cetyltrimethylammonium bromide was used as the organic template. Their detailed pore structures were investigated by transmission electron microscopy, X-ray diffraction, and N2 adsorption method. The thermal properties of these silicalites were studied by thermogravimetric analysis. The increased amount of MTES destroyed mesoporous channels and reduced pore sizes from 3.4 nm to 2.8 nm in calcined silicalites. The calcined silicalite transformed completely into an amorphous state at 30% MTES loading. Methyl pending groups of MTES hindered the structural ordering of ≡Si-O- frameworks, resulting in an amorphous structure. This was caused by the insufficient formation of supramolecular assembly with the organic template. No capillary condensation step was found in MS 7/3 silicalite. The other capillary condensation steps shifted toward the lower relative pressure with increasing MTES content, indicating the reduction of pore sizes.

Synthesis and Characterization of Titanoalumino Silicalite (티타노알루미노 실리카라이트의 합성 및 특성연구)

  • Ko, Yong-Sig;Kim, Sang-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.53-58
    • /
    • 2005
  • Titanoalumino silicalite (TAS) was prepared hydrothermally, and the effects of synthesis parameters such as silica/alumina sources, $SiO_2/TiO_2$ ratio, and aging treatment were investigated. The structure, crystal size, and shape were examined by XRD and SEM, and the extent of titanium incorporation into the zeolite framework was examined using UV-vis DRS spectroscopy. For TAS preparation, aging of ca. 24h was essential, and the faster crystallization rates were achieved with Cab-O-Sil than with Ludox or TEOS as a silica source. In addition, the higher crystallinity and faster crystallization rate were obtained using sodium aluminate as an aluminum source.

  • PDF

Synthesis of Gallosilicate(Ga-MFI} and Its Comparison with ZSM-5 (갈리실리케이트(Ga-MFI)의 합성 및 ZSM-5와의 비교)

  • Kim, Young-Kook;Hwang, Jae-Young;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2004
  • Ga-MFI was synthesized by a hydrothermal process at atmospheric pressure. The effect of mole ratios of reactants on crystallization was also investigated thoroughly. The characteristics of synthesized Ga-MFI was compared with ZSM-5. The synthesis of Ga-MFI was carried out with five different mole-compositions of $\underline{a}SiO_2-\underline{b}Ga_2O_3-\underline{c}Na_2O-\underline{d}TPA_2o-\underline{e}H_2O$. The synthesized Ga-MFI and ZSM-5 were characterized by XRD and FT-IR. The inorganic cation ($Na^+$) and water played an important role in crystallinity and the organic cation ($TPA^+$) as a template played a great influence on yields. With the increase in the amount of $Ga^{3+}$, crystallization time was increased. With a fixed $SiO_2/Ga_2O_3$ ratio of 400, the optimum reaction condition was obtained at $H_2O/SiO_2$=30${\sim}$35, $Na_2O/SiO_2$=0.5${\sim}$0.6, and $TPA_2O/Na_2O$=1${\sim}$1.25. In these cases, the crystallinity and yield were more than 95% and 90%, respectively. By comparing IR spectrum of Ga-MFI with those of ZSM-5 and silicalite, it was found that Ga-MFI showed a unique peak at 970 $cm^{-1}$, which may be used to identify Ga-MFI from ZSM-5 and silicalite.