• Title/Summary/Keyword: silica-sol

Search Result 385, Processing Time 0.023 seconds

A study on the calcination process of synthetic silica powder for quartz glass crucibles (석영유리 도가니용 합성 실리카 분말의 하소공정에 관한 연구)

  • Yang, Jae-Kyo;Jin, Yun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.128-135
    • /
    • 2022
  • The inside of a quartz glass crucible for semiconductor processing, called a transparent layer, is manufactured using synthetic silica powder. Bubbles existing in the transparent layer of the crucible cause a problem of reducing the quality of the crucible as well as the yield of the silicon ingot. Therefore, the main goal of the synthetic silica powder, which is the raw material of the transparent layer, is to minimize the bubble generation factor. For this purpose, in the case of synthetic silica powder, it is necessary to minimize silanol groups, carbon and pores. In this study, synthetic silica gel was prepared using the sol-gel method, and changes in carbon content and specific surface area were investigated according to calcination temperature and dwelled time in a two-stage calcination process. The first-stage calcination process was performed between 500℃ and 600℃ and the second-stage calcination process was performed between 1000℃ and 1100℃. The dwelled time was carried out from 10 minutes to a maximum of 12 hours. The carbon content of the powder calcined at 1000℃ for 1 hour was 0.0031 wt.%, and the specific surface area of the powder calcined at 1100℃ for 12 hours was 16.6 m2/g.

The Concentration-Dependent Distribution of Tris(4,7'-diphenyl-1,10'-phenanthroline) Ruthenium (II) within Sol-Gel-Derived Thin Films

  • Lee, Joo-Woon;Cho, Eun-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2765-2770
    • /
    • 2011
  • Organic dye-doped glasses, viz., ruthenium (II) tris(4,7'-diphenyl-1,10'-phenanthroline) $[Ru(dpp)_3]^{2+}$ incorporated into thin silica xerogel films produced by the sol-gel method, were prepared and their $O_2$ quenching properties investigated as a function of the $[Ru(dpp)_3]^{2+}$ concentration (3-400 ${\mu}M$) within the xerogel. The ratio of the luminescence from the $[Ru(dpp)_3]^{2+}$-doped films in the presence of $N_2$ and $O_2$ ($I_{N2}/I_{O2}$) was used to describe the film sensitivity to $O_2$ quenching. ($I_{N2}/I_{O2}$ changed three-fold over the $[Ru(dpp)_3]^{2+}$ concentration range. Time-resolved intensity decay studies showed that there are two discrete $[Ru(dpp)_3]^{2+}$ populations within the xerogels (${\tau}_1$ ~ 300 ns; ${\tau}_2$ ~ 3000 ns) whose relative fraction changes as the $[Ru(dpp)_3]^{2+}$ concentration changes. The increased $O_2$ sensitivity that is observed at the higher $[Ru(dpp)_3]^{2+}$ concentrations is a manifestation of a greater fraction of the 3000 ns $[Ru(dpp)_3]^{2+}$ species (more susceptible to $O_2$ quenching). A model is presented to describe the observed response characteristics resulting from $[Ru(dpp)_3]^{2+}$ distribution within the xerogel.

Study on the Excellent Heat Resistance Organic-Inorganic Hybrid Flame Retardant (내열성이 우수한 유-무기 하이브리드 방염제에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Sung-Eun;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.67-72
    • /
    • 2016
  • The development of flame retardants aims to prevent the spread of fire and reduce the casualties caused by flammable and toxic gases generated during the combustion of building materials used in the interiors of multi-use facilities. Flame material application provides flame resistance to a silica sol in an organic-inorganic hybrid material by flame retardant adhesive or coating by producing a sol-gel method. The conventional flame retardant materials, non-flame retardant material is applied with Halogen freeway. In particular, the basic physical properties of conventional adhesive coating improves the heat resistance, enhances the durability fire and heat, and expands the halogen free flame retardant of building materials.

Preparation of a Water-Selective Ceramic Membrane on a Porous Stainless Steel Support by Sol-Gel Process and Its Application to Dehydration Membrane Reactor

  • Lee, Kew-Ho;Sea, Bongkuk;Youn, Min-Young;Lee, Yoon-Gyu;Lee, Dong-Wook
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • We developed a water-selective ceramic composite membrane for use as a dehydration membrane reactor for dimethylether (DME) synthesis from methanol. The membranes were modified on the porous stainless steel support by the sol-gel method accompanied by a suction process. The improved membrane modification process was effective in increasing the vapour permselectivity by removal of defects and pinholes. The optimized alumina/silica composite membrane exhibited a water permeance of 1.14${\times}$10$^{-7}$ mol/$m^2$.sec.Pa and a water/methanol selectivity of 8.4 at permeation temperature of 25$0^{\circ}C$. The catalytic reaction for DME synthesis from methanol using the membrane was performed at 23$0^{\circ}C$, and the reaction conversion was compared with that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor was much higher than that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor and the conventional fixed-bed reactor was 82.5 and 68.0%, respectively. This improvement of reaction efficiency can last if the water vapour produced in the reaction zone is removed continuously.

Characteristics of Organic NLO Materials in Silica Matrix Prepared by Sol-gel Process (졸-겔공정에 의해 실리카 구조체에 도입된 유기 NLO 물질의 특성)

  • Jung, Mie-Won;Mun, Jeong-Ho;Shul, Yong-Gun;Wada, Tatsuo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.482-487
    • /
    • 1993
  • Organic nonlinear optical materials such as MNA(2-Methyl-4-nitro-aniline), Carbazole 1(5-Nitro-9-hydroxyethyl Carbazole), Carbazole 2(5-Nitro-9-ethyl Carbazole) and DR 1(Disperse Red 1) were incorporated into silica matrix to form a composite thin films. The thermal stability and degree of degradation were compared to these organic-inorganic composite film. Among those films, Carbazole 1 and DR 1 which have terminal -OH group showed enhanced stability for thermal degradation. The effect of polarization and degree of relaxation for the composite thin films incorporated with Carbazole 1 were measured by the absorbance change of UV spectra with time. With polarization treatment of Carbazole 1 incorporated composite film, the intensity of UV absorbance was remarkably reduced. And slow relaxation of Carbazole 1 molecule was suggested from the slightly recovered intensity of UV absorbance after removing the electric field at rooma temperature.

  • PDF

Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals

  • Yu, Hye-Min;Kim, Ah-Ram;Moon, Jun-Hyuk;Lim, Jong-Sung;Choi, Kyu-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2178-2182
    • /
    • 2011
  • Recently, the synthesis of ordered macroporous materials has received much attention due to its potential use as photonic band gap materials.$^1$ In this study, we have used the three-dimensional (3D) latex array template impregnated with benzenesulfonic acid (BSA), which is capable of catalyzing the reaction using tetraethyl orthosilicate (TEOS) as a precursor and distilled water. The polystyrene (PS) templates were reacted with TEOS in $scCO_2$ at 40 $^{\circ}C$ and at 80 bar. In the reactor, TEOS was filtrated into the PS particle lattice. After the reaction, porous silica materials were obtained by calcinations of the template. The stability test of the PS template in pure $CO_2$ was conducted before the main experiment. Scanning electron microscopy (SEM) images showed that the reaction in $scCO_2$ takes place only on the particle surface. This new method using $scCO_2$ has advantages over conventional sol-gel processes in its capability to control the fluid properties such as viscosity and interfacial tension. It has been found that the reaction in $scCO_2$ occurs only on the particle surface, making the proposed technique as more rapid and sustainable method of synthesizing inverse opal materials than conventional coating processes in the liquid phase and in the vapor phase.

Preparation of Mesoporous Materials and Thin Films It's Application for DNA Sensor

  • Han, Seung-Jun;Heo, Soon-Young;Park, Keun-Ho;Lee, Soo;Kim, Byung-Kwan;Kim, Jin-Heung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.345-351
    • /
    • 2004
  • Highly ordered pure-silica MCM-41 materials possessing well-defined morphology have been successfully prepared with surfactant used as a template. The fabrication of mesoporous silica has received considerable attention due to the need to develop more efficient materials' for catalysis, separations, and chemical sensing. The surface modified MCM-41 was used as anadsorbent for biomolecules. Silica-supported organic groups and DNA adsorption on surface modified MCM-41 were investigated by FT-IR and UV-Vis spectrometer, respectively. The use of MCM-41 as the modification of electrode surfaces were investigated electrochemical properties of metal mediators with biomolecules. The modified ITO electrodes increased peak currents for a redox process of $[Ru(bpy)_3]^{2+}$ relative to the bare electrode. The electrochemical detection of DNA by cyclic voltammetry when the current is saturated in the presence of the mediator appeared more sensitive due to a higher catalytic current on the MCM-41 supported electrodes modified by carboxylic acid functional groups. The carboxyl or amine groups on the surface of MCM-41 interact and react with the $-NH_2$ groups of guanine and backbone, respectively. Highly ordered mesoporous materials with organic groups could find applications as DNA sensors.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

The Effect of Silica binder content ans Sintering condition on the Strength of Zircon-based Shell Mold (실리카 바인더 함량과 소결조건이 지르콘계 주형의 강도에 미치는 영향)

  • Kim, Jae-Won;Kim, Du-Hyeon;Kim, In-Su;Seo, Seong-Mun;Jo, Hae-Yong;Kim, Du-Su;Jo, Chang-Yong;Choe, Seung-Ju
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2000
  • The effect of silica binder content on the mechanical properties of zircon shell mold was investigated. Content of binder silica sol to refractory powder in weight[$R_W$] was adjusted from 0.18 to 0.43. Sintering of the shell mold was carried out in the temperature range of $871^{\circ}C$ to $1400^{\circ}C$. Green strength of the shell mold at room temperature increased with increasing $R_W$ and sintering temperature up to $1300^{\circ}C$. However, the mold with $R_W$ of 0.43 that sintered at $1400^{\circ}C$ for 3 hours showed relatively low strength and large level of porosity. The mechanical behavior of the shells is supposed to attributed to the difference in thermal expansion coefficient between refractory powder and binder silica. The optimum value of $R_W$ for zircon-based shell molds was found to be 0.33.

  • PDF

Fabrication and characteristics of TiO2 coating solution with silica-based inorganic binder (실리카 베이스 무기 바인더 기반의 TiO2 코팅액의 제조 및 특성 평가)

  • Kang, Woo-kyu;Kim, Hye-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Jang, Gun-Eik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.71-76
    • /
    • 2019
  • Recently, the demand of labels for product management is increasing, as the automation system becomes more common. the development of functional labels which can be used in various environments has been rapidly proceeded. In the case of a printed circuit board, barcode labels with thermal and chemical stability are generally used due to a high temperature process around $300^{\circ}C$ and chemical cleaning in the manufacturing process. However, the yellowing phenomenon of labels that can lower the resolution of printed barcode image still needs to be prevented. In this study, we prepared a composite coating layer using a silica inorganic binder and a titanium dioxide white pigment, and developed a functional labels with thermal and chemical stability. The silica inorganic binder prepared by sol-gel process was confirmed to show excellent adhesion and abrasion resistance with the polyimide film. The white coating layer could be formed on the polyimide film with mixing the silica inorganic binder and titanium dioxide white pigment. The prepared coating layer showed excellent whiteness and glossiness above $400^{\circ}C$. The excellent chemical stability of the coating layer was also confirmed by the chemical treatment with acidic (pH 1.6) and basic (pH 13.6) cleaners.