• Title/Summary/Keyword: silica-sol

Search Result 385, Processing Time 0.04 seconds

Drainage and Shear Stability of Microparticle Retention Systems Based on Cationic Guar Gums and Colloidal Silicas (양이온성 구아검과 콜로이달 실리카를 이용한 마이크로파티클 보류시스템의 탈수 및 전단안정성)

  • Ham, Choong-Hyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • The trend of using more hardwood and recycled fibers, and closing more tightly of the paper mill white water system has resulted in build-up of fines as well as organic and inorganic contaminants in the white water. This changes in papermaking wet end requires developing chemical additive system that provides good fiber retention and drainage in closed white water system. In this study the effect of charge densities and chemical characteristics of microparticle systems consisted of cationic guar gums and anionic colloidal silica sols on drainage and retention have been examined. Results showed that higher charge density of cationic guar gum and anionic colloidal silica sol gave better retention and drainage. Particularly highly structured silica gave greater retention efficiency.

INFSUENCE OF CROSSLINKED CATIONIC STARCHES AND SILICA MICROGELS ON THE PERFORMANCE OF MICROPARTICLE RETENTION SYSTEM

  • Kim, Tae-Young;Lee, Hak-Lae
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.43-49
    • /
    • 1999
  • Effectiveness of the microparticle retention systems in improving dramage, retention, formation has been recognized for many years (1, 2, 3, 4, 5). In this study the effectiveness of crosslinked cationic corn starches and silica-based microgels as components of Compozil system has been evaluated. It was shown that improvements in retention and strength could be achieved by employing crosslinked cationic corn starches especially at high conductivity. Silica-based microgels with better performance in retention and dramage than a commercial colloidal silica sol have been made through a reaction of sulfuric acid and sodium silicate solutions.

Effect of Reaction Condition and Solvent on The Size and Morphology of Silica Powder Prepared by An Emulsion Technique

  • Park, Won-Kyu;Kim, Dae-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.229-235
    • /
    • 2000
  • The spherical silica powder was synthesized by varying the kinds of solvent and mixing energy in emulsion method. The stirring speed varied from 500 to 1000 r.p.m. at 5$0^{\circ}C$ for 2h. Toluene in benzyl groups and a series of alkanes were used as dispersant. The average size of spherical silica particles decreased with increasing the stirring speed and the chain length o solvents used in this work. The average size was controlled in the range of 134~28$\mu\textrm{m}$ by selecting a proper solvent and stirring speed. The optimum processing parameters were described in details.

  • PDF

Monodisperse Micrometer-Ranged Poly(methyl methacrylate) Hybrid Particles Coated with a Uniform Silica Layer

  • Han, Seung-Jin;Shin, Kyo-Min;Suh, Kyung-Do;Ryu, Jee-Hyun
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.399-403
    • /
    • 2008
  • Monodisperse, micron-sized, hybrid particles having a core-shell structure were prepared by coating the surface of poly(methyl methacrylate)(PMMA) microspheres with silica and by copolymerizing acrylamide (AAm) to supply the hydrogen bonding effect by means of the amide groups. Tetraethoxysilane (TEOS) was then slowly dropped onto the medium under certain conditions. Because of the hydrogen bonding between the amide of the PMMA particles and the hydroxyl group of the hydrolyzed silanol, a silica shell was generated on the PMMA core particles. The morphology of the hybrid particles was investigated with transmission (TEM) and scanning (SEM) electron microscopy as a function of the medium conditions and the amount of TEOS. Improved thermal properties were observed by TGA analysis.

Preparation of Carbon-Containing Silica Glass by Heat Treatment of Ormosil (세라믹/고분자 복합체의 열처리에 의한 탄소 함유 실리카 유리의 제조)

  • 김구대;이동아;박지애;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.459-464
    • /
    • 1999
  • A carbon-containing silica glass was prepared from orgaincally modified silicate(Ormosil) by heat treatment in N2 atmosphere after the ormosil was synthesized using sol-gel method. The Ormosil was fabricated from the TEOS as the inorganic component and the PDMS as the organic component. The Ormosil changed to balck-coloured glass by carbon decomposed from the PDMS when the Ormosil was heated to 450$^{\circ}C$ 20hrs. A dense silicon oxycarbide glass with 2.08 g/cm3 was obtained by heating the Ormosil at 1050$^{\circ}C$ 10hrs. The microstructure of the carbon-containing silica glass was observed by SEM and the SiOxC4-x structure was confirmed by XPS measurement. The densification of the glass was studied by measurements of specific surface area linear shrinkage and geometric density.

  • PDF

Potential of PVA templated Silica Xerogels as Adsorbents for Rhodamine 6G

  • Pirzada, Tahira;Shah, Syed Sakhawat
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.1024-1029
    • /
    • 2011
  • PVA/silica hybrid xerogels were synthesized by sonohydrolysis of a mixture of 2-way catalyzed TEOS and water solution of PVA. PVA was successfully removed from the xerogels through calcination and its removal was confirmed through TGA analysis of the calcined gel. Microstructure of the gels was studied through SEM, XRD and FTIR. Nitrogen sorption studies were conducted to find out surface area of different samples. It was found out that the samples having PVA removed through calcinations have higher surface area (411.64 $m^2$/g) than the samples (353.544 $m^2$/g) synthesized without any PVA. Adsorption properties of these xerogels synthesized by using different ratios of components were studied by taking Rhodamine G6 as a model adsorbate. The experiments were conducted at room temperature ($25^{\circ}C$). UV visible spectroscopy was used to measure the concentration of the dye before and after adsorption. The adsorption data of Rhodamine G6 on PVA modified silica is described by the Freundlich's adsorption model.

Fluorescent Magnetic Silica Nanotubes with High Photostability Prepared by the Conventional Reverse Micro-Emulsion Method

  • Zhang, Yuhai;Son, Sang Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4165-4168
    • /
    • 2012
  • Magnetic fluorescent silica nanotubes were fabricated using reverse micro-emulsions coupled with conventional sol-gel methods. Anodic aluminum oxide templates were used to separate spatially the magnetic and the fluorescent moieties on individual nanotubes and so prevent quenching of the fluorescence. C18 and fluorescent layers were deposited sequentially on silica. Magnetism was then obtained by the introduction of pre-made magnetic nanoparticles inside the nanotubes. The photo- and chemical stabilities of nanotubes were demonstrated through dye release and photobleaching tests. The produced nanotubes did not show fluorescence quenching upon the addition of the nanoparticles, an advantage over conventional spherical fluorescent magnetic nanoparticles. High photostability of nanotubes, magnetism and biocompatiblily make them potentially useful in bioanalysis.

Preparation of the silica composite membranes for CO removal from PEMFC anode feed gas

  • Lee, Dong-Wook;Lee, Yoon-Gyu;Nam, Seung-Eun;Bongkuk Sea;Ihm, Son-Ki;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.129-132
    • /
    • 2003
  • Silica/SUS composite membranes were prepared for CO removal from products of methanol steam reforming. A support was prepared by coating Ni powder of sub-micron and SiO$_2$ sols of particle size of 500nm and 150nm in turns on a porous stainless steel (SUS) substrate. Silica top layer was coated on the modified support using colloidal sol with nanoparticle. As a result of mixture gas permeation test of silica composite membrane using H$_2$(99%)/CO(1%), CO concentration of 10000 ppm was reduced to under 81 ppm, which is acceptable in PEMFC anode gas specification. Permeation mechanism through the membrane was mainly molecular sieving.

  • PDF

Fabrication and characterization of solution processable organosilane-modified colloidal titania nanoparticles and silica-titania hybrid films

  • Kang, Dong Jun;Park, Go Un;Lee, Hyeon Hwa;Ahn, Myeong Sang;Park, Hyo Yeol
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.78-81
    • /
    • 2012
  • Colloidal titania nanoparticles were synthesized by a simple sol-gel process. The obtained nanoparticles showed high crystallinity and were of the anatase type. These crystalline colloidal titania nanoparticles were organically modified using methyl- and glycidyl-grafted silanes in order to enhance their stability and solution processability. The stabilized colloidal titania nanoparticles could be dispersed homogeneously without aggregation and converted into silica-titania hybrid films with the heterogeneous Si-O-Ti bonds by a low-temperature solution process. The fabricated silica-titania hybrid films showed high transparency (~ 90%) in the visible range, and low RMS roughness (<1 nm). Therefore, the organosilane-modified crystalline colloidal titania nanoparticles can be used in solution-processable functional coatings for electro-optical devices.

Preparation and Gas Permeation Properties of Polyimide-Silica Hybric Memberanes (폴리이미드-실리카 하이브리드막의 제조와 기체투과특성)

  • 염승호;정용수;이우태;김선일;김진환
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.116-123
    • /
    • 2001
  • Polyimide-silica hybrid membranes were prepared and the effect of silica content on the structural properties and the gas transport properties was studied. The hybrid membranes were obtained by the sol-gel process starting from 1,2,4,5-benzenetetracarboxylic dianhydride(PMDA), 4,4`-diamino- diphenyl oxide(ODA) and tetraethoxysilane(TEOS) in N,N` dimethylacetatmide (DMAc) solvent. The structural characterizations of the membrane were performed by FT-IR, EDX, TGA and SEM. The gas permeation experiments with ${N_2}, {O_2}, {H_2}, {CO_2}and ${CH_4}$ were carried out at the temperature of $25^{\circ}C$ and in the range of pressure from 3atm to 7atm. the hybrid membranes showed higher thermal stability than PI membranes. The silica patricles were uniformly embedded in the polyimide matrix and the size of silica particles increased with increasing silica content. The permeability coefficients of ${N_2}, {O_2}, {H_2}, {CO_2}and ${CH_4}$ increased with increasing silica content but the diffusion coefficients might appear to be a result of a solubility enhancement. In spite of the permeability enhancement, an increase in the selectivities of ${H_2}/{N_2}, ${H_2}/{O_2} and ${H_2}/{CO_2} was observed.

  • PDF