• Title/Summary/Keyword: silica structure

Search Result 591, Processing Time 0.028 seconds

Bifunctional Silane (TESPD) Effects on Silica Containing Elastomer Compound Part I: Natural Rubber (NR) (양기능성실란(TESPD)이 실리카함유 복합소재에 미치는 영향)

  • Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.134-142
    • /
    • 2009
  • Organo bifunctional silane (TESPD) is added into silica containing NR and its effects are investigated with respect to the vulcanization properties, the processability, and the physical properties. The addition of the TESPD into silica filled NR compound increases the degree of crosslinking by formation of a strong 3-dimensional network structure with silica surface via coupling reaction, which results in an improved mechanical property. It also improves the processabilities compared to the Control compound.

Bifunctional Silane (TESPD) Effects on Silica Containing Elastomer Compound Part II: Styrene-co-Butadiene Rubber (SBR) (양기능성실란(TESPD)이 실리카 함유 복합 소재에 미치는 영향 Part II: Styrene-co-Butadiene Rubber (SBR))

  • Jeon, Duk-Kyu;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.252-259
    • /
    • 2009
  • Bifunctional silane (TESPD) is added into silica filled SBR compound and its effects with respect to the vulcanization properties, the processability, and the physical properties are investigated. The addition of the TESPD into silica filled SBR compound increases the degree of crosslinking by formation of a strong 3-dimensional network structure with silica surface via coupling reaction, which results in an improved mechanical property. It also improves the processabilities compared to the Control compound.

Flexible and Transparent Silica Aerogels: An Overview

  • Parale, Vinayak G.;Lee, Kyu-Yeon;Park, Hyung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.184-199
    • /
    • 2017
  • Silica aerogels are attracting attention due to certain outstanding properties such as low bulk density, low thermal conductivity, high surface area, high porosity, high transparency and flexibility. Due to these extraordinary properties of aerogels, they have become a promising candidate in thermal superinsulation. The silica-based aerogels are brittle in nature, which constrains their large scale-application. It is necessary to achieve transparency and flexibility of silica-based aerogels at the same time and with the same porous structure for optical field applications. Therefore, the present review focuses on the different sol-gel synthesis parameters and precursors in the synthesis of flexible as well as transparent silica aerogels. Also, a brief overview of reported flexible and transparent aerogels with some important properties and applications is provided.

Electro-optic Behavior of Photonic Crystals with Nematic Liquid-Crystal (액정을 이용한 광자결정의 형성과 전기광학 효과)

  • Kwon, Jang-Un;Han, Soon-Ku;Kang, Dae-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1933-1935
    • /
    • 2002
  • In this paper, we present a study of the structure and electro-optic behavior of hybrid liquid-crystal-silica sphere composite photonic crystals, formed by filling the (26% by volume) void space of fee (face centered cubic) silica opals infiltrated with a nematic liquid crystal. Three dimensional photonic crystals of visible range were fabricated via a self assembly method of silica spheres of submicron diameter. The expected fee structure was confirmed by scanning electron microscopy (SEM) of the dehydrated crystal with glass removed. The photonic crystal exhibited significant electric-field-induced shift of the optical Bragg reflection peak when the liquid crystal has the long molecular axis oriented parallel to the sphere surfaces.

  • PDF

Multinuclear Solid-state NMR Investigation of Nanoporous Silica Prepared by Sol-gel Polymerization Using Sodium Silicate

  • Kim, Sun-Ha;Han, Oc-Hee;Kim, Jong-Kil;Lee, Kwang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3644-3649
    • /
    • 2011
  • Multinuclear solid-state nuclear magnetic resonance (NMR) experiments were performed to investigate the local structure changes of nanoporous silica during hydrothermal treatment and surface modification with 3-aminopropyltriethoxysilane (3-APTES). The nanoporous silica was prepared by sol-gel polymerization using inexpensive sodium silicate as a silica precursor. Using $^1H$ magic angle spinning (MAS) NMR spectra, the hydroxyl groups, which play an important role in surface reactions, were probed. Various silicon sites such as $Q^2$, $Q^3$, $Q^4$, $T^2$, and $T^3$ were identified with $^{29}Si$ cross polarization (CP) MAS NMR spectra and quantified with $^{29}Si$ MAS NMR spectra. The results indicated that about 25% of the silica surface was modified. $^1H$ and $^{29}Si$ NMR data proved that the hydrothermal treatment induced dehydration and dehyroxylation. The $^{13}C$ CP MAS and $^1H$ MAS NMR spectra of 3-APTES attached on the surface of nanoporous silica revealed that the amines of the 3-aminopropyl groups were in the chemical state of ${NH_3}^+$ rather than $NH_2$.

Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane (콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성)

  • Na, Moon-Kyong;Ahn, Myeong-Sang;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

Synthesis and Electrochemical Characterization of Silica-Manganese Oxide with a Core-shell Structure and Various Oxidation States

  • Ryu, Seong-Hyeon;Hwang, Seung-Gi;Yun, Su-Ryeon;Cho, Kwon-Koo;Kim, Ki-Won;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2683-2688
    • /
    • 2011
  • Silica-manganese oxides with a core-shell structure were synthesized via precipitation of manganese oxides on the $SiO_2$ core while varying the concentration of a precipitation agent. Elemental analysis, crystalline property investigation, and morphology observations using low- and high-resolution electron microscopes were applied to the synthesized silica-manganese oxides with the core-shell structure. As the concentration of the precipitating agent increased, the manganese oxide shells around the $SiO_2$ core sequentially appeared as $Mn_3O_4$ particles, $Mn_2O_3+Mn_3O_4$ thin layers, and ${\alpha}-MnO_2$ urchin-like phases. The prepared samples were assembled as electrodes in a supercapacitor with 0.1 M $Na_2SO_4$ electrolyte, and their electrochemical properties were examined using cyclic voltammetry and charge-discharge cycling. The maximum specific capacitance obtained was 197 F $g^{-1}$ for the $SiO_2-MnO_2$ electrode due to the higher electronic conductivity of the $MnO_2$ shell compared to those of the $Mn_2O_3$ and $Mn_3O_4$ phases.

Nanostructure Construction of SiO2@Au Core-Shell by In-situ Synthesis (코어-쉘 구조 SiO2@Au 나노입자의 in-situ 합성)

  • Pyeon, Mu-Jae;Kim, Do Kyung;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.420-425
    • /
    • 2018
  • Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for $SiO_2@Au$ core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.