• Title/Summary/Keyword: silica structure

Search Result 591, Processing Time 0.027 seconds

Detection of Undeclared Betamethasone Derivatives in Cosmetic Products Labeled to Contain Zinc Pyrithione as the Active Ingredient (아연피리치온을 유효성분으로 표기한 화장품류에서 미표기 성분인 베타메타손 유도체의 검출)

  • Lee, Jeong-Pyo;Park, Sung-Hwan;Yang, Seong-Jun;Kim, Sun-Mi;Son, Kyung-Hun;Yun, Mi-Ok;Choi, Sang-Sook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • Betamethasone propionate, an anti-inflammatory glucocorticosteroid, was detected in cosmetics with no indication on the label of this compound as an ingredient. The product was formulated as a topical spray or shampoo and labeled to contain zinc pyrithione as the active ingredient. A thin-layer chromatographic analysis was carried out on silica gel plates to provide a first indication about the presence of a compound with steroid structure and reactivity; then high-performance liquid chromatography (HPLC) separation allowed the identification of the corticosteroid agent and its quantification. To identify the corticosteroid agent from these commercial samples we collected the fractions suspected to have ketol steroids by prep HPLC and identified the compound as betamethasone propionate by NMR and MS spectrometry. Then we synthesized the standard for the betamethasone 17-propionate and 21-propionate and quantitate the corticosteroids from the sample by HPLC with that standards. By this method we identified the corticosteroid compounds from some commercial cosmetics such as zinc pyrithione sprays. The finding of betamethasone propionate in the products was shown by comparison to an authenticated standard of betamethasone propionate by retention time on reverse-phase HPLC. Two of the tested products contained betamethasone propionate at the levels of 0.005 ${\sim}$ 0.02% and the others were free of betamethasone propionate.

Strength Development and Durability of High-Strength High-Volume GGBFS Concrete (고강도 고함량 고로슬래그 콘크리트의 강도 발현 특성 및 내구성)

  • Kim, Joo-Hyung;Jeong, Ji-Yong;Jang, Seung-Yup;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.261-267
    • /
    • 2015
  • To develop high-strength high-volume ground granulated blast-furnace slag (GGBFS) concrete, this study investigated the characteristics of strength development and durability of concrete with the water-to-binder ratio of 23% and the GGBFS replacement ratio of up to 65%. The results show that the compressive strength of GGBFS blended concrete is lower than that of ordinary Portland cement (OPC) concrete up to 3-day age, but the becomes higher after 7-day age. Together with strength increase, the pore structure becomes tighter, and thus the resistance to chloride ion penetration increases. Therefore, the GGBFS blended concrete has high resistance to freezing and thawing without additional air-entraining, and high resistance to carbonation despite low amount of calcium hydroxide ($Ca(OH)_2$). On the other hand, if silica fume (SF) is blended with GGBFS, the strength becomes lower than that of the concrete blended with GGBFS only, and the resistance to chloride ion penetration deceases. Therefore, it needs further studies on the reaction of SF in high-strength high-volume GGBFS concrete.

Study on the control of marine biofouling developed on the surface of porous ceramics (세라믹 다공체 표면에 발생하는 해양 생물 오손 억제에 관한 연구)

  • Kang, Jimin;Kang, Seunggu;Kim, YooTack
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.218-224
    • /
    • 2015
  • Recently, removing methods of red tide has been attempted by filtering the organisms using the ceramic porous bodies. However, the marine biofouling could be developed on the surfaces of porous ceramic body after use for more than one month, and it might decrease the function of the specimen. In this paper, a method of inhibiting marine biofouling by changing the physical properties or surface-modification of ceramic porous body was studied. After experiment with six different ceramic porous bodies, it was found that the specimen of lower porosity and water absorption showed the least amount of biofouling. In addition, by increasing the surface roughness with silica particles bonded to the surface of specimen, the amount of biofouling caused by large marine life such as barnacle and mussel could be decreased. On the other hand, when the surface of specimen was coated and fused by glass powder, the amount of biofouling was rather increased. This might be due to eluted inorganic ions from the glass which can promote the growth of the microorganism. In conclusion, the environmental-friendly methods to reduce the amount of marine biofouling, such as controlling the physical properties and the surface roughness of the porous ceramics, can be possible without the use of dangerous substances. So it is expected for the results obtained to be applicable to a marine structure.

KrF 엑시머 레이저를 이용한 웨이퍼 스텝퍼의 제작 및 성능분석

  • 이종현;최부연;김도훈;장원익;이용일;이진효
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.15-21
    • /
    • 1993
  • This paper describes the design and development of a KrF excimer laser stepper and discusses the detailed system parameters and characterization data obtained from the performance test. We have developed a deep UV step-and-repeat system, operating at 248 nm, by retrofitting a commercial modules such as KrF excimer laser, precision wafer stage and fused silica illumination and 5X projection optics of numerical aperture 0.42. What we have developed, to the basic structure, are wafer alignment optics, reticle alignment system, autofocusing/leveling mechanisms and environment chamber. Finally, all these subsystem were integrated under the control of microprocessor-based controllers and computer. The wafer alignment system comprises the OFF-AXIS and the TTL alignment. The OFF-AXIS alignment system was realized with two kinds of optics. One is the magnification system with the image processing technique and the other is He-Ne laser diffraction type system using the alignment grating on the wafer. 'The TTL alignment system employs a dual beam inteferometric method, which takes advantages of higher diffraction efficiency compared with other TTL type alignment systems. As the results, alignment accuracy for OFF-AXIS and TTL alignment system were obtained within 0.1 $\mu\textrm{m}$/ 3 $\sigma$ for the various substrate on the wafers. The wafer focusing and leveling system is modified version of the conventional systems using position sensitive detectors (PSD). This type of detection method showed focusing and leveling accuracies of about $\pm$ 0.1 $\mu\textrm{m}$ and $\pm$ 0.5 arcsec, respectively. From the CD measurement, we obtained 0.4 $\mu\textrm{m}$ resolution features over the full field with routine use, and 0.3 $\mu\textrm{m}$ resolution was attainable under more strict conditions.

  • PDF

Polyacetylene Compounds from Panax ginseng C.A. Meyer (인삼의 Polyacetylene 화합물)

  • Shim Sang Chul;Chang Suk-Ku
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.122-128
    • /
    • 1988
  • Several major polyacetylene compounds were isolated from the petroleum-ether fraction of fresh Korean ginseng roots through solvent fractionation. partition and silica gel column chromatography. Further separation of acetylenic compounds was accomplished by bonded normal phase HPLC utilizing a moderately nonpolar microparticulate column. The preparative separation for the various spectral measurements was carried out by low pressure preparative liquid chromatography. The chemical structure of these polyacetylenes separated was determined by UV. IR/FTIR. $^{1}H$ NMR. mass spectral and elemental analysis. These are identified to be heptadeca-1-en-4.6-diyn-3.9.l0.-triol [1] heptadeca-1.9-dien-4.6-diyn-3-ol. heptadeca-1.8-dien-4.6-diyn-3.10-diol and the 4th was denatured polyacetylene. heptadeca-1.4-dien-6.8-diyn-3.10-diol. Two different p-substituted benzoates of panaxynol were synthesized for the determination of exciton chirality. The circular dichroism spectra in the UV region show that panaxynol p-bromobenzoate and p-dimethyl-aminobenzoate constitute negative exciton chirality [2]. Isolated major polyacetylene compounds were irradiated in aerated solution with 300 nm UV light to obtain the oxidized product at the allylic alcohol center to corresponding carbonyl compounds such as heptadeca-1-en-4.6-diyn-9.10-diol-3-one and heptadeca-1.9-dien-4.6-diyn-3-one. These photooxidation compounds have en-on-diyne chromophore and undergo nucleophilic addition reaction with methanol to yield ${\beta}-methoxy$ carbonyl compounds such as heptadeca-9-en-4.6-diyn-1-methoxy-3-one and heptadeca-4.6-diyn-1-methoxy-9.10-diol-3-one.

  • PDF

Mineralogical Properties and Paragenesis of H-smectite (H-스멕타이트의 광물학적 특성과 생성관계)

  • Noh, Jin-Hwan;Hong, Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.377-393
    • /
    • 2010
  • Pumiceous tuffs occurring in the Beomgockri Group are examined applied-mineralogical characteristics and their controling factors to evaluate their potentials as the adsorption-functional mineral resources. The pumiceous tuffs are diagenetically altered to low-grade zeolitcs and bentonites in the Janggi area. Compositional specialty due to the presence of pumice fragments induces the altered tuffs to exhibit the characteristic adsorption property combined with cation exchange capacity, specific surface area, and acidic pH. Unusual lower pH in the adsorption-functional mineral substances is turned out to be originated from the presence of H-smectite having $H^+$ in the interlayer site of the sheet structure. On account of disordered crystallinity resulting from the exchanged $H^+$ in the interlayer site, the smectite commonly forms crenulated edges in the planar crystal form and exhibits characteristic X-ray diffraction patterns showing comparatively lower intensities of basal spacings including (001) peak than conventional Ca-smectite. Based on the interpretation of paragenetic relations and precursor of the H-smectite, a genetic model of the peculiar clay mineral was proposed. The smectite formation may be facilitated resulting from the precipitation of opal-CT at decreasing pH condition caused by the release of H+ during diagenetic alteration of pumice fragments. Because of the acidic smectite, the low-grade mineral resources from the Beomgockri Group may be applicable to the adsorption industry as the raw materials of acid clays and bed-soil.

Pancreatic Lipase Inhibitors Isolated from the Leaves of Cultivated Mountain Ginseng (Panax ginseng) (산양삼 잎으로부터 Pancreatic lipase 저해 활성물질의 분리)

  • Hong, Ju-Yeon;Shin, Seung-Ryeul;Bae, Man-Jong;Bae, Jong-Sup;Lee, In-Chul;Kwon, O-Jun;Jung, Ji-Wook;Kim, Yong-Han;Kim, Tae-Hoon
    • Food Science and Preservation
    • /
    • v.17 no.5
    • /
    • pp.727-732
    • /
    • 2010
  • Activity-guided fractionation of an ethyl acetate (EtOAc)-soluble portion of an ethanolic extract from the leaves of cultivated mountain ginseng, using pancreatic lipase inhibition assay, led to the isolation and identification of three flavonoids of a previously described structure, kaempferol-3-O-sophoroside (I), kaempferol-3-O-${\beta}$-Dglucopyranoside (astragalin, II) and kaempferol (III). All compounds (I.III) showed pancreatic lipase inhibitory activities, with $IC_{50}$ values ranging from $20.3{\pm}2.2$ to $9.1{\pm}1.5$ ${\mu}M$, kaempferol (III) showed the most potent inhibitory activity with an $IC_{50}$ of $9.1{\pm}1.5$ ${\mu}M$. The level of activity may depend on the number of C-3 glucosyl group(s) linked to the kaempferol backbone, and the isolated compounds may have promise as pancreatic lipase inhibitors.

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

Development of Grinding/Polishing Process for Microstructure Observation of Copper melted Beads (구리 용융흔 미세조직 관측을 위한 연마/미세연마 프로세스 개발)

  • Park, Jin-Young;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.108-116
    • /
    • 2018
  • A melted bead microstructure can be divided into a deformed and undeformed layer. Measurement errors occur in the presence of a deformed layer, which should be removed through grinding/polishing whilst preserving the original structure. This paper proposes a grinding/polishing process to analyze the microstructure of copper melted beads. For the removal of the deformed layer, the correlation between the abrasive type/size, the polishing time and polishing rate was analyzed and the thickness of the deformed layer was less than $1{\mu}m$. The results suggest a new grinding/polishing procedure: silicon carbide abrasive $15{\mu}m$ (SiC P1200) 2 min, and $10{\mu}m$ (SiC P2400) 1 min; and diamond abrasive $6{\mu}m$ 8 min, $3{\mu}m$ 6 min, $1{\mu}m$ 10 min, and $0.25{\mu}m$ 8 min. In addition, a method of increasing the sharpness of the microstructure by chemical polishing with $0.04{\mu}m$ colloidal silica for 3 min at the final stage is also proposed. The overall grinding/polishing time is 38 min, which is shorter than that of the conventional procedure.