• Title/Summary/Keyword: silica fume concrete

Search Result 497, Processing Time 0.028 seconds

Permeability and mechanical properties of binary and ternary cementitious mixtures

  • Sadrmomtazi, Ali;Tahmouresi, Behzad;Amooie, Morteza
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.423-436
    • /
    • 2017
  • Today, pozzolans are widely used in construction for various reasons such as technical and economic efficiency. In this research, in order to evaluate some of important properties of concrete, silica fume and fly ash have been used as a replacement for cement in different mass percentages. Concrete mixtures were made from a water-cement ratio of (0.45) and cured under similar conditions. The main focus of this study was to evaluate the permeability and mechanical properties of concrete made from binary and ternary cementitious mixtures of fly ash and silica fume. In this study permeability of concrete was studied by evaluating the sorptivity, water absorption, water penetration depth, electrical resistivity and rapid chloride permeability (RCP) tests. Mechanical properties of concrete were evaluated with compressive strength, splitting tensile strength and modulus of elasticity. Scanning electronic microscopy (SEM) was used to characterize the effects of silica fume and fly ash on the pore structure and morphology of concrete with cement based matrix. The results indicated that the incorporation of silica fume and fly ash increased the mechanical strength and improved the permeability of concrete.

Properties of Ternary or Quaternary High Strength Concrete Using Silica Fume & Meta Kaolin (실리카퓸과 메타카올린을 사용한 다성분계 고강도콘크리트의 특성)

  • Park, Cho-Bum;Kim, Ho-Su;Jeon, Jun-Young;Kim, Eun-Kyum;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.307-315
    • /
    • 2008
  • In this study, it is investigated the properties of high strength concrete using mineral admixture, on the purpose of use of meta kaolin for the substitutive materials to silica fume which is so expensive. The plain mixtures are 3 degrees which are ordinary portland cement, blast furnace slag cement and OPC included fly ash 20%, and silica fume and meta kaolin are substituted for the each plain mixtures in the range of 20%. The results of experiment showed as follows. In case of silica fume was only used, the viscosity and slump flow of fresh concrete were much decreased, on the contrary air content increased. But as usage of meta kaolin increased, to being increase the viscosity of fresh concrete, slump flow increased and air content and usage of super-plasticizer were decreased. Accordingly the workabilities of concrete were against tendency between silica fume and meta kaolin. The compressive strength, velocity of ultrasonic pulse and unit weight were increased according to usage of meta kaolin, the properties of hardened concrete were judged that they are affected with air content of fresh concrete, so it is very important to control air content of high strength concrete. Therefore, the use of meta kaolin is prospected to the substitutive material of silica fume, in case of using silica fume and meta kaolin, it is judged that the optimum usage of silica fume and meta kaolin is about 10% respectively, considering workability and strength of concrete.

Micromechanics-based evaluation of diffusivity and permeability of concrete containing silica fume (실리카퓸 혼입 콘크리트의 확산계수 및 투수계수의 미시학적 추정)

  • 장종철;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.531-536
    • /
    • 2002
  • Silica fume influences concrete diffusivity and permeability as well as strength by densifying the microstructure of the interfacial transition zone (ITZ) of high strength concrete, by reducing the capillary porosity of cement paste and by producing less diffusible and permeable pozzolanic CSH gel than CSH gel of conventional cement hydration. This paper presents a procedure to predict the chloride ion diffusivity and water permeability of the high strength concrete containing silica fume. Water binder ratio, silica fume addition, degree of hydration and volume fraction of aggregates are considered as the major factors influencing concrete diffusivity and permeability in the procedure. Analytical results using the procedure are shown and verified with other data.

  • PDF

An Experimental Stud on The Quality Improvement of High Strength Concrete using Mineral Admixtures (혼화재를 사용한 고강도콘크리트의 품질개선에 관한 실험적 연구)

  • 류영호;박정국;이보근;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.79-88
    • /
    • 1993
  • The purpose of this study is to provide a firm base for the quality improvement of high strength concrete and the development of ultra high strength concrete as well as enviromental con-servation and utilization of byproducts from industrial processing such as Fly ash and Silica fume. A comprehensive experimental study was performed to investigate the effects on the quality improvement of high strength concrete using mineral admixtures. As results, 400~500kg/$\textrm{cm}^2$ compressive strength and excellent flowability can be obtained if fly ash is replaced with cement in the range of 305. In case of using powder type silica fume, 600~700 kg/$\textrm{cm}^2$ compressive strength is showed and 600~800kg/$\textrm{cm}^2$ compressive strength cam be obtained with liquid type silica fume. But it is necessary to increase dosage of high range water reducer for flowability using powder type silica fume. Especially, higher strength concrete cam be obtained when maximum size of coarse aggregate is lower than 25mm.

  • PDF

A Hydration Model for Blended Concrete utilizing Secondary Cementitious Powders (혼화재를 사용한 콘크리트의 수화모델)

  • Noh Jea Myoung;Byun Keun Joo;Song Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.140-143
    • /
    • 2004
  • Heat of hydration of concrete under different curing temperatures can be characterized with knowledge of the thermal activity, the heat rate at the reference temperature, and the total heat of hydration of the mixture. The so-called multi-component hydration model incorporates the effect of following variables: cement chemical composition, cement fineness, secondary cementitious powders, mixture proportions, and concrete properties. However, the model does not consider the use of silica fume as a secondary cementitious powder. Therefore, the model that quantifies the heat of hydration due to the use of silica fume is needed. In this thesis, the effects of silica fume on heat of hydration are evaluated and the influence on the heat of hydration are also quantified to be included in the model, so that the analysis using modified multi-component hydration model for silica fume concrete provides more accurate results than normal concrete.

  • PDF

Strength Characteristics of Soil Concrete Using Jeju Volcaniclastic and Construction Techniques (제주도 석산 부산물인 화산토를 사용한 흙포장의 강도 및 시공 특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, a series of soil concrete mixtures were tested for the compressive strength according to ratio of aggregate to binder, compaction energy, maximum aggregate size, ratio of silica fume to cement, and ratio of water to binder. The optimum mixing ratio of soil concrete mixtures composed of volcaniclastic, cement, silica fume, concrete polymer and water were analysed. The test results for optimum proportion were as follows ; (1)ratio of aggregate to binder was 4 : 1, (2)compaction energy level was level 2, (3)maximum aggregate size was 13 mm, (4)ratio of silica fume to cement was 10%, (5)ratio of water to binder was 25%. Also, dry type construction techniques were applied using the optimum soil concrete mixture. From the results of this study, the compressive strength of soil concrete and construction techniques were suitable for making eco-friendly soil pavement.

A Study on Production and Physical Properties of High-Strength Concrete with Blending Additives (혼합재를 사용한 고강도 콘크리트의 제조와 물성에 관한 연구)

  • Jeong, Yong;Shim, Yong-Soo;Kim, Won-Ki;Jaung, Jae-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.15-20
    • /
    • 1991
  • High-strength concrete were produced with super-plasticizer, silica fume, fly ash and blast furnace slag powder. Topics investigated inclued mix proportion, and effects of unit weight of binder, W/C ratio, additive type on the physical properties of high-strength concrete. As the result, at 20% of silica fume, unit weight of binder 700kg/$\textrm{m}^3$ and W/C=0.24, 28days compressive strength of concrete was over 1,000kgf/$\textrm{cm}^2$. And in cases of blending with silica fume 10% and fly ash or slag 10%, it was able to produce economical high-strength concrete with 28 days strength similar to silica fume 20% only, and higher strength after 90days.

  • PDF

Estimation on the Durability of High-Strength Concrete using Metakaolin (Metakaolin 혼합 고강도콘크리트의 내구특성 평가)

  • Moon Han Young;Yum Jun Hwan;Moon Su Dong;Lee Sang Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.217-220
    • /
    • 2004
  • Metakaolin is a cementitious material for producing high-strength concrete. This material is now used as substitute for silica-fume. In this paper, we did the durability test such as chloride ion diffusion, chemical attack. repeated freezing and thawing, carbonation. In the chloride ion diffusion test, according to the increase of substitute of metakaolin & silica-fume for binder, the diffusion coefficient is more reduced. And in the chemical attack test, according to the increase of substitute, the resistance is more excellent. In the other durability test, the concrete using metakaolin is also compared with those of the portland cement concrete and silica fume concrete. According to these tests, we recognized that metakaolin is able to be used as a substitute for silica-fume.

  • PDF

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Tension Stiffening Behavior of High Strength Concrete Utilizing Silica Fume Free Binder (실리카 흄 대체재로 SFFB를 사용한 고강도 콘크리트의 인장강성)

  • Yun, Hyun-Do;Park, Whan-Shin;Lee, Young-Oh;Kim, Sun-Woo;Lee, Sang-Soo;Yun, Gil-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.107-108
    • /
    • 2010
  • This paper provides test results on the tension stiffening behavior of high strength concrete (HSC) members used silica fume free binder (SFFB) instead of silica fume. The objective of this study is to evaluate the capability of replacing expensive silica fume to SFFB in HSCs with compressive strength of 60 and 80MPa. Test results indicated that for two mixes of 60 and 80 MPa HSC, cracking and strength behavior of tension members, which are replaced silica fume to SFFB, showed equivalent performance to those of tension members used silica fume.

  • PDF