• Title/Summary/Keyword: silica fume concrete

Search Result 497, Processing Time 0.022 seconds

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

An Experimental Study on the Manufacture Ultra-High Strength Concrete of 1800kg/$\textrm{cm}^2$ Compressive Strength (Part 2 The Experiment on the Manufacture of the U.H.S Concrete) (압축강도 1800kg/$\textrm{cm}^2$의 초고강도콘크리트 개발에 관한 실험적 연구 (제2보 초고강도콘크리트의 제조에 관한 실험))

  • 남상일;김진만;최민수;김규용;최희용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.171-174
    • /
    • 1994
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America, and its compressive strength has gone up to 1300kg/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project. And high-strength concrete with a design compressive strength over 450kg/$\textrm{cm}^2$ has recently been employed for high rised reinforced concrete building. As a result of the serious land availability situation of metropolitan areas in the world, buildings will become taller, and even higher strengths will be required. In the future, the utilization of high-strength concrete will spread widely through the development of new structural concepts, application of steels of a higher yield stress, silica fume, and other new materials. Considering these circumstance, the aim of this experimental study is to develop ultra-high-strength concrete with compressive strength over 1800kg/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse by silica fume. The results of this experimental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 1700kg/$\textrm{cm}^2$ at 28days, 1800kg/$\textrm{cm}^2$ at 56 days.

  • PDF

An Experimental Study on the Manufacture Ultra-High Strength Concrete of 1800kg/$\textrm{cm}^2$ Compressive Strength (Part I The Experimental Program and Preliminary Experiment) (압축강도 1800kg/$\textrm{cm}^2$의 초고강도콘크리트 개발에 관한 실험적 연구 (제1보 실험계획 및 예비실험))

  • 김규용;김진만;이상수;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.167-170
    • /
    • 1994
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America, and its compressive strength has gone up to 1300kg/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project. And high-strength concrete with a design compressive strength over 450kg/$\textrm{cm}^2$ has recently been employed for high rised reinforced concrete building. As a result of the serious land availability situation of metropolitan areas in the world, buildings will become taller, and even higher strengths will be required. In the future, the utilization of high-strength concrete will spread widely through the development of new structural concepts, application of steels of a higher yield stress, silica fume, and other new materials. Considering these circumstance, the aim of this experimental study is to develop ultra-high-strength concrete with compressive strength over 1800kg/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse by silica fume. The results of this experimental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 1700kg/$\textrm{cm}^2$ at 28days, 1800kg/$\textrm{cm}^2$ at 56 days.

  • PDF

Mixing and Strength Properties of 150MPa Ultra High Strength Concrete (150MPa 초고강도 콘크리트 배합 및 강도발현 특성)

  • Ahn, Jong-Mun;Kang, Hoon;Kim, Jong-Keun;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.373-376
    • /
    • 2008
  • Ultra High Strength Concrete(UHSC) is necessary a clear presentation about mechanical property that is different from normal strength concrete and an evaluation of serviceability of high rise building which is used ultra high strength concrete. To mixing ultra high strength concrete with $f_{ck}$=150MPa pre-mix cement were manufactured and experimental study were conducted to evaluated on the mixing properties and compressive strength with major variables as unit cement contents, water-binder ratio and type of pre-mix cement. As a test result, it is shown that the concrete mixing time is required about 5$^{\sim}$6 minute untill the each materials(ordinary portland cement, silica fume, blast-furnace slag powder and anhydrite) are revitalized enough. A slump flow of fresh concrete are shown about 700$^{\sim}$750mm with proper viscosity. And average value of concrete compressive strength are shown about 77% in 7days, 87% in 14days and 102% in 56days for 28days of concrete material age. From this experimental study, a proper mixture proportion of pre-mix cement are recommended about 54$^{\sim}$59% OPC, 25$^{\sim}$30% blast-furnace slag powder and 10$^{\sim}$15% silica fume for mix the ultra high strength concrete with $f_{ck}$=150MPa.

  • PDF

Potential use of local waste scoria as an aggregate and SWOT analysis for constructing structural lightweight concrete

  • Islam, A.B.M. Saiful;Walid, Walid;Al-Kutti, A.;Nasir, Muhammad;Kazmi, Zaheer Abbas;Sodangi, Mahmoud
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This study aims to investigate the influence of scoria aggregate (SA) and silica fume (SF) as a replacement of conventional aggregate and ordinary Portland cement (OPC), respectively. Three types of concrete were prepared namely normal weight concrete (NWC) using limestone aggregate (LSA) and OPC (control specimen), lightweight concrete (LWC) using SA and OPC, and LWC using SA and partial SF (SLWC). The representative workability and compressive strength properties of the developed concrete were evaluated, and the results were correlated with non-destructive ultrasonic pulse velocity and Schmidt hammer tests. The LWC and SLWC yielded compressive strength of around 30 MPa and 33 MPa (i.e., 78-86% of control specimens), respectively. The findings indicate that scoria can be beneficially utilized in the development of structural lightweight concrete. Present renewable sources of aggregate will preserve the natural resources for next generation. The newly produced eco-friendly construction material is intended to break price barriers in all markets and draw attraction of incorporating scoria based light weight construction in Saudi Arabia and GCC countries. Findings of the SWOT analysis indicate that high logistics costs for distributing the aggregates across different regions in Saudi Arabia and clients' resistant to change are among the major obstacles to the commercialized production and utilization of lightweight concrete as green construction material. The findings further revealed that huge scoria deposits in Saudi Arabia, and the potential decrease in density self-weight of structural elements are the major drivers and enablers for promoting the adoption of lightweight concrete as alternative green construction material in the construction sector.

A Study for Microstructure and Durability of Metakaolin Concrete (메타카올린 콘크리트의 미세 공극구조 및 내구성에 관한 연구)

  • Kim, Myung-Yu;Yang, Eun-Ik;Yang, Joo-Kyoung;Park, Hae-Geun;Chun, Sang-Eun;Lee, Myeong-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.417-420
    • /
    • 2008
  • The requirement for durability of concrete is increasing recently as a large-scale concrete structure is built. For this reason, the concern about high-durable concrete is being high. Recently, metakaoline to be profitable in economical aspect as well as to have strength and durability of level similar to silica fume is evaluated highly as new admixture. In this study, the scaling, the drying shrinkage, the chloride resistance and the air-void structure are compared for both metakaolin and silica fume concrete. According to the results, the replacement of metakaoline improved the resistance of chloride penetration, freezing and thawing in concrete. On the other hand, as metakaolin was replaced to 10%, it was similar level with OPC in the property of scaling. It was showed that replacement of only metakaoline was similar with OPC in the drying shrinkage. However, MS5 reduced the drying shrinkage about 10%. In conclusion, replacement of the metakaoline 10% is the most excellent performance in terms of durability of concrete.

  • PDF

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Evaluation of Strengthening Capacity of Axial Member Using Admixture-Modified Mortar (혼화재 첨가 모르터를 이용한 압축부재의 보강성능 평가)

  • 박준명;양동석;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • Strength and Durability of reinforced concrete exposed at deteriorated environment are decreased by cover spatting and corrosion of reinforcement. The purpose of this paper is to evaluate capacity of strengthening axial member using admixture-modified mortar. To investigate the capacity of strengthened axial member, behavior and strength of strengthening specimens were compared with a monolithic basic specimen. Admixture-modified mortar was prepared with silica fume, zeolite, polymer as cement modifier. From the result of this experiment, strengthening specimens using polymer-modified mortar have apparrent strengthening capacity because of good flexural strength and tensile strength.

  • PDF

Bond Strength Characteristics Between Aggregate and Mortar (골재-모르타르 경계면의 부착강도 특성)

  • 박연동;양주경;임희철;김진근;장정수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.129-134
    • /
    • 1991
  • The effects of water-cement ratio, age, and admixture such as fly ash, silica fume on the bond strength between aggregate and mortar were investigated. As the result, with increasing of water-cement ratio, the bond strength was slightly decreased while the compressive strengths of mortar and concrete were seriously decreased. The rate of strength gain of bond strength was not decreased with increasing of water-cement ratio while that of compressive strength was gradually decreased.

  • PDF

Predicting the compressive strength of cement mortars containing FA and SF by MLPNN

  • Kocak, Yilmaz;Gulbandilar, Eyyup;Akcay, Muammer
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.759-770
    • /
    • 2015
  • In this study, a multi-layer perceptron neural network (MLPNN) prediction model for compressive strength of the cement mortars has been developed. For purpose of constructing this model, 8 different mixes with 240 specimens of the 2, 7, 28, 56 and 90 days compressive strength experimental results of cement mortars containing fly ash (FA), silica fume (SF) and FA+SF used in training and testing for MLPNN system was gathered from the standard cement tests. The data used in the MLPNN model are arranged in a format of four input parameters that cover the FA, SF, FA+SF and age of samples and an output parameter which is compressive strength of cement mortars. In the model, the training and testing results have shown that MLPNN system has strong potential as a feasible tool for predicting 2, 7, 28, 56 and 90 days compressive strength of cement mortars.