• Title/Summary/Keyword: silica contents

Search Result 326, Processing Time 0.026 seconds

BAM:Mn Phosphor Prepared from Spray Solution with Colloidal Silica (실리카 함유 콜로이달 분무용액으로부터 합성된 BAM:Mn 형광체)

  • Ju, Seo-Hee;Koo, Hye-Young;Hong, Seung-Kwon;Kim, Do-Youp;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • [ $BaMgAl_{10}O_{19}:Mn^{2+}$ ](BAM:Mn) phosphor particles with spherical shape were prepared by spray pyrolysis from colloidal solution with silica. The phosphor particles prepared by spray pyrolysis from aqueous solution had irregular morphology after high temperature post-treatment. On the other hand, the phosphor particles prepared from spray solution with colloidal silica had spherical shape after post-treatment. Colloidal silica used as additive improved the spherical shape and filled morphology of the precursor particles prepared by spray pyrolysis. The precursor particles with filled structure produced the BAM:Mn phosphor particles with spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ under reducing atmosphere. The phosphor particles prepared from colloidal solutions formed the crystal structure of BAM:Mn phosphor irrespective of the silica contents. The BAM:Mn phosphor particles prepared from aqueous and colloidal solutions had similar photoluminescence intensities under vacuum ultraviolet.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Cement Composites Utilizing by-Products(II) (산업부산물을 활용한 섬유보강 시멘트 복합체의 역학적 특성에 관한 실험적 연구(II))

  • 박승범;윤의식;조청휘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.144-149
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber reinforced silica fume.cement composites and light weight fly ash.cement composites are presented in this paper. The CF reinforced silica fume.cement composites using silica fume early strength cement were prepared with Pan-derived or Pitch-derived CF, and Lt. Wt, fly ash.cement composites using fly ash, early strength cement, perlite and a small amount of foaming agent. As the test results show, the flexural strength, toughness and ductility of CF reinforced silica fume .cement composites were remarkably increased by fiber contents. Also, the manufacturing process technology of Lt. Wt. fly ash.cement composites was developed and its optimum mix proportions were proposed. And the compressive and flexural strength of the fly ash.cement composites by hot water cured were improved even more than by moist cured, but are decreased by increasing fly ash replaced ratio for cement.

  • PDF

Analysis of hydration of ultra high performance concrete (초고성능 콘크리트의 수화모델에 대한 연구)

  • Wang, Hai-Long;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete

  • Mazloom, Moosa;Soltani, Abolfazl;Karamloo, Mohammad;Hassanloo, Ahmad;Ranjbar, Asadollah
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.45-72
    • /
    • 2018
  • In the present study, a special attention has been paid to the effects regarding the use of different superplasticizers in different dosages. To do so, 36 mixes of normal and self-compacting concrete with two water/binder ratios of 0.35 and 0.45, four different types of superplasticizer including melamine-formaldehyde, naphthalene-formaldehyde, carboxylic-ether and poly-carboxylate, four different superplasticizer/cement ratios of 0.4%, 0.8%, 1.2% and 1.6% and two silica fume/cement ratios of 0% and 10% have been cast. Moreover, the initial and final setting time of the pastes have been tested. For self-compacting mixes, flow time, slump flow, V-funnel, J-ring and L-box tests have been carried out as well as testing the compressive strength and rupture modulus. For normal concrete mixes,slump test has been conducted to assess the workability of the mix and then for each mix, the compressive strength and rupture modulus have been determined. The results indicate that in addition to the important role of superplasticizer type and dosage on fresh state properties of concrete, these parameters as well as the use of silica fume could affect the hardened state properties of the mixes. For instance, the mixes whose superplasticizer were poly-carboxylic-ether based showed better compressive and tensile strength than other mixes. Besides, the air contents showed robust dependency to the type of the superplasticizer. However, the use of silica fume decreased the air contents of the mixes.

Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates (폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구)

  • 박승범;이봉춘;권혁준
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2001
  • Incorporation of wastes glass aggregate in mortar may cause crack and this may result in the strength reduction due to alkali-silica reaction(ASR) and expansion. The purposes of this study were to investigate the properties of alkali-silica expansion and strength loss through a series of experiments which had a main experimental variables such as waste glass aggregate contents, glass colors, fiber types, and fiber contents. The steel fibers and polypropylene fibers were used for constraining the ASR expansion and mortar cracking. From the result, green waste glass was more suitable than brown one because of low expansion. And in this accelerated ASTM C 1260 test of waste glass, pessimum content can not be found. Also, when used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. Specially, adding 1.5 vol.% of steel fiber to 20% of waste glass, the expansion ratio was reduced by 40% and flexural strength was developed by up to 110% comparing with only waste glass(80$\^{C}$ H$_2$O curing).

The Influence of the Silica Contents for High Temperature Strength for Single Crystal Casting Mold of Superalloys (초합금 단결정 주조용 주형의 실리카 함량에 따른 고온강도 영향)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Im, Ok-Dong;Jin, Yeong-Hun;Seo, Dong-Lee;Lee, Jae-Hun;Kim, Byeong-Ho;O, Je-Myeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.879-883
    • /
    • 1998
  • In the vacuum casting process for superalloys, molten metal are poured into the heated ceramic mold up to $1000^{\circ}C~1700^{\circ}C$. The mold has to have the high temperature strength during casting and made by hlgh purity alumina. In this sturdy, the mold was made by low purity alumina and changed silica contents intended to have high strength The 7.7wt.% SiOz specimens have 10- 55% higher strength than others in room and high temp. Therefore, the cast mold has been developed in this study for single crystal vacuum cast by controlling the ratio of fused alumina and colloidal silica which are used commercially for conventional casting in industries.

  • PDF

Electrodeposition of Permalloy-Silica Composite Coating (전기도금법을 이용한 퍼멀로이-실리카 복합도금)

  • Jung, Myung-Won;Kim, Jong-Hoon;Lee, Heung-Yeol;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2010
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and sonication time. Longer sonication period guaranteed better silica nanopowder dispersion and sonication period also influenced on composition of deposits. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In alkaline bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

Mechanical Behavior of Polymer Foam Reinforced with Silica Aerogel (실리카 에어로겔을 첨가한 폴리머 폼의 기계적 특성)

  • Ahn, Jae-Hyeok;Kim, Jeong-Hyeon;Kim, Jeong-Dae;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.413-418
    • /
    • 2017
  • In the present study, silica-aerogel-polyurethane foams were synthesized to improve the mechanical characteristics and insulation performance of the polyurethane foam applied to a liquefied natural gas carrier at a cryogenic temperature of $-163^{\circ}C$. A silica-aerogel-polyurethane foam bulk was prepared using a homogenizer by varying the weight ratio of the silica aerogel (0, 1, 3, and 5 wt%), while maintaining the contents of the polyol, isocyanate, and blowing agent constant. Compression tests were performed at room and cryogenic temperatures to compare the mechanical properties of the silica-aerogel polyurethane foams. The internal temperature of the universal testing machine was maintained through the cryogenic chamber. The thermal conductivity of the silica-aerogel-polyurethane foam was measured using a heat flow meter to confirm the insulation performance. In addition, the effect of the silica aerogels on the cells of the polyurethane foam was investigated using FE-SEM and FTIR. From the experimental results, the 1 wt% silica aerogel polyurethane foam showed outstanding mechanical and thermal performances.

Investigation on Uptake of Silica and Phosphorus and Rice Fertilization Impediment Occured in Yeongnam Area under the Cool Weather of 1980 (1980 냉해조건하 영남지방의 수도임실장해와 규산 및 인산 흡수관계)

  • Kang, Y.S.;Jung, Y.T.;Park, R.K.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.3
    • /
    • pp.226-232
    • /
    • 1981
  • To clarify the relationship between rice cool injury and the contents of silica and phosphorus in the soils and the rice plant, the investigation was carried out at ripening stage of rice from the different altitudes with different varieties throughout Yeongnam area. The rate of fertilized spikelets were decreased with elevation increase and the situation was distincted in the Japonica cross Indica hybrid varieties. The higher rates of $SiO_2/P_2 O_5$ content in the leaves and stems or lower rates of that in the soils show the higher fertilization rates. The result seems to be caused by the different solubility and uptakes of silica and by the different availability and transformation of phosphorus. A positive correlation was observed between the content of silica in rice plant and the fertilization rates. The fertilization rate in Japonica varieties was higher than that of Indica cross Japonica hybrid varieties in the case of the same content of silica in plant as far as observed, but the increasing rate of fertilized grains due to increase of silica content was prominented in the hybrid varieties which probably demand more silica. Within the certain limit of silica and phosphorus content in rice plant, the more uptaking of silica might lessen the cool injury.

  • PDF

Analysis of Quartz Contents by XRD and FTIR in Respirable Dust from Various Manufacturing Industries Part I - Foundry (제조업체에서 발생하는 호흡성분진중 XRD와 FTIR를 이용한 결정형 유리규산 농도의 비교분석 제 1부 - 주물사업장)

  • Kim, Hyunwook;Roh, Young Man;Phee, Young Gyu;Won, Jeoung IL;Kim, Yong Woo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.50-66
    • /
    • 1998
  • This study was conducted to estimate crystalline silica contents in airborne respirable dust from various manufacturing industries and to compare analytical performance of two methods of quantifying crystalline silica, X-ray diffraction(XRD) and Fourie transform infrared spectroscopy (FTIR). For this study, various manufacturing industries with a history of having pneumoconiosis cases and also known to generate dusts containing crystalline silica were investigated. These industries include: foundry, brick, potteries, concrete, and abrasive material, etc. Both personal and area respirable dust samples were collected using 10 mm, Dorr-Oliver nylon cyclone equipped with 37mm, $5{\mu}m$ pore size, polyvinylchloride (PVC) filters as collection media. In addition, total dust samples were collected side-by-side to the respirable samples. All samples were weighed before and after sampling and were pretreated according to the NIOSH sampling and analytical methods 0500, 7500, and 7602 for dust collection and quartz analysis. In addition, bulk samples were collected and analyzed by X-ray fluorescence (XRF) for minerals. In this article, only the results obtained from foundry are reported. The results from various other industries will be published in future articles. The respirable dust concentrations from personal samples by cyclone were $0.46-1.06mg/m^3$ and those from area samples were $0.34-0.73mg/m^3$. Dust concentrations of personal samples were significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. Total dust concentration ranged $1.24-3.40mg/m^3$. The mean quartz contents estimated by FTIR and XRD in the personal respirable dust samples were 5.12% and 4.41%, respectively, without significant difference between them. For quartz analyses, the two techniques were highly correlated with $r^2$ ranged 0.803-0.920. But the results by FTIR were mostly higher than those by XRD. In addition, cristobalite was not detected by FTIR. Significant correlations between contents of crystalline silica and such minerals as $Al_2O_3$, CaO, $TiO_2$, and $K_2O$ suggest possible interferences from these minerals.

  • PDF