• Title/Summary/Keyword: silica / silane

Search Result 157, Processing Time 0.024 seconds

Amino Silane, Vinyl Silane, TESPD, ZS (TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber (CIIR) Compounds Part III: Comparative Studies on Hard Clay and Soft Clay Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.190-197
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, sulfur silane (TESPD), and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/soft clay/carbon black (CB) and CIIR/hard clay/CB compounds and they are investigated with respect to the vulcanization characteristics, the processability, and the mechanical properties. Comparing hard clay and soft clay filled compounds, hard clay (Suprex) filled system shows a higher die C tear than the soft clay (GK) filled one. The other properties (Mooney, extrusion torque/pressure, torque rise ($M_H-M_L$), modulus at 300%) are close to each other. Among various silanes, the ZS treated hard clay (Suprex) compound shows the highest mechanical property following hard clay(S)/vinyl silane(V) and soft clay(GK)/vinyl silane(V) compounds. The TESPD and the ZS effectively helps a formation of a strong 3-dimensional network structure between silica and CIIR via coupling reaction due to bifunctional nature of TESPD. In addition to that, the ZS added compounds show both a better processability and mechanical properties compared to the S2 ones at low concentration due to improved compatibility between zinc soap and CIIR matrix. Only the ZS added compound shows both improved processabilities (Mooney, Extrusion torque-& pressure) and improved mechanical properties (degree of crosslinking, elongation modulus, tear, and fatigue to failure counts) on both CIIR/hard clay/CB and CIIR/soft clay/CB compounds.

Studies on the Synthesis and Characteristic of Silica-PMMA Nano Hybrid Material (실리카-PMMA 나노 하이브리드 코팅액 제조 및 특성에 관한 연구)

  • Son, Dae Hee;Kim, Dae-Sung;Lee, Seung-Ho;Kim, Song Hyuk;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In order to improve the surface hardness of transparent plastic films, an organic-inorganic hybrid coating solution was sunthesized by the sol-gel method. Coating solutions that were prepared colloidal silica (CS), poly methyl methacrylate (PMMA), vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltrimethoxy silane (MAPTMS) was varied with synthesizing parameters such as kinds of organic silane and weight ratio of CS to PMMA. Such coating solution was bar coated on the PET film, cured, and investigated on the chemical and physical properties of coating film. The organic-inorganic hybrid coating solutions have better properties at the pencil hardness and adhesion of coating film than those of an organic material such as PMMA.

A Study on Physical Properties of Epoxy Resin Filled with Surface-treated Silica: I. Surface-treating of Silica and Properties of Mixtures (표면처리된 실리카를 충전한 에폭시 수지계의 물성에 관한 연구 I. 실리카의 표면처리 및 혼합 물성)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 1990
  • Surface of crystalline silica was sequentially reacted with silane(A 187), liquid rubber(CTBNx8) and vinyl monomer(AA, MMA, 2-HEA, GMA) in existance of amines(TEA, CTMAB, BETAC) or peroxide(BPO). By mixing it with epoxy resin at a ratio 0~36%(volume %) of total component, liquid properties of mixtures was investigated experimentally. i) Coating ratio depended on quantity and sorts of catalyst. ii) Total coating of 2.5~5.8% was attained by using 0.1~2.0% of catalyst. iii) Treated surfaces represented each different features in according to sorts of treatment. iv) Silane/rubber or silane/rubber/vinyl represented lower viscosity and settling than non-treated or silane-treated.

  • PDF

Studies on the Reinforced Effect of Rubber Elastomer by means of Milled Glass Fiber Treated with Silane Coupling Agents (Silane Coupling제(劑) 처리(處理) Glass Fiber에 의(依)한 탄성체(彈性體)의 보강효과(補强效果)에 관(關)한 연구(硏究))

  • Lee, Sang-Hyun;Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.3
    • /
    • pp.204-212
    • /
    • 1987
  • The purpose of this study is to investigate the reinforced effect between MGF treated silane coupling agents and rubber matrix under the configuration chemical bonds, also the effect of triazine thiol compounds. For this study, vulcanizates were prepared with fifteen different compounding formulas. Their vulcanization characteristics, physical properties were examined by means of the ODR(Oscillating Dist Rheometer), the tensile tester, the benzene swelling test. The results of this study obtained are as follows: 1. In the ODR test, the MA vulcanizate was the fastest one in terms of having reached to optimum cure time($t_{90}$) and, with the same formula, when MGF vulcanizates, the shortest optimum cure times has appeared. 2. The SA, SC vulcanizates were the best the other in the physical properties such as 100%modulus, 200%modulus, 300%modulus, tensile strength. The SB vulcanizate, with higher density of crosslinking than other vulcanizates. The vulcanizates, which were filled with MGF treated with silane coupling agents we were the higher density of crosslinking than vulcanizates filled with MGF only. 3. In aging properties, the silica vulcanizates appeared to be better than the other vulcanizates. The aging Properties of treated MGF vulcanizates were similar to the silica vulcanizates. The(CR+APS+silica) and(CR+APS+MCF) were easily crosslinked by exposure to the air, and the physical properties have been improved.

  • PDF

Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds (실란 구조가 실리카 복합소재 내 구조발달 상호계수(αC)에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang Jea
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (${\alpha}_F$) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (${\alpha}_C$), which included Wolff's filler-filler interaction parameter (${\alpha}_F$), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound ${\alpha}_C$ (= ${\alpha}_F+{\alpha}_{FP}$(filler-silane-rubber interaction parameter) + ${\alpha}_P$ (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the ${\alpha}_C$ value of each compound was measured and calculated. The ${\alpha}_C$ value of TESPT treated silica filled compound was 1.64, which composed of ${\alpha}_F$ (0.99), ${\alpha}_{FP}$ (0.31), and ${\alpha}_P$ (0.34).

Effect of Hydrophobic Surface Coating on Flowability of Ceramic Tile Granule Powders (표면 소수화 처리를 통한 도자타일 과립 분말의 유동 특성)

  • Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung;Hwang, Kwang-Take
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.425-431
    • /
    • 2019
  • Generally, ceramic tiles for building construction are manufactured by dry forming process using granular powders prepared by spray drying process after mixing and grinding of mineral raw materials. In recent years, as the demand for large ceramic tiles with natural texture has increased, the development of granule powders with high packing ratio and excellent flowability has become more important. In this study, ceramic tile granule powders are coated with hydrophobically treated silica nanoparticles. The effects of hydrophobic silica coating on the flowability of granule powders and the strength of the green body are investigated in detail. Silica nanoparticles are hydrophobically treated with GPTMS(3-glycidoxypropyl trimethoxy silane), which is an epoxy-based silane coupling agent. As the coating concentration increases, the angle of repose and the compressibility decrease. The tap density and flowability index increase after silica coating treatment. These results indicate that hydrophobic treatment can improve the flowability of the granular powder, and prevent cracking of green body at high pressure molding.

Study on Mixing Condition of the Rubber Composite Containing Functionalized S-SBR, Silica and Silane : II. Effect of Mixing Temperature and Time (변성 S-SBR Silica-Silane 고무복합체의 배합조건에 대한 연구 : II. 배합온도와 시간의 영향)

  • Jang, Suk-Hee;Kim, Wook-Soo;Kang, Yong-Gu;Han, Min-Hyun;Chang, Sang-Mok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.103-113
    • /
    • 2013
  • The properties of the rubber composites containing a silane and silica were evaluated by changing the mixing time and temperature, in order to find the optimum mixing conditions. Characteristics of the compounds were evaluated after mixing at $120^{\circ}C$, $140^{\circ}C$, and $160^{\circ}C$ with various mixing time. With increasing of mixing time, mooney viscosity decreased while the bound rubber contents of the compounds increased. Viscosity rise by increased mixing time was bigger at low temperature and the higher the mixing temperature the faster in the formation of bound rubber. With lower mixing temperature of $120^{\circ}C$, cross-linking rate was almost constant. Dynamic viscoelastic properties and dispersity of the compound showed that dispersion of ingredients and reaction was not sufficient with the mixing time of less than 10min. On the contrary, with high temperature, it was obvious that good dynamic and physical properties could be obtained due to sufficient coupling reaction, however it was thought this high temperature is not optimum because of sensitive cross-linking rate and physical properties and excessive formation of bound rubber. Consequently, it was confirmed that the mixing condition of 10min at $140^{\circ}C$ was optimum for the silane coupling reaction and dispersion of functionalized S-SBR containing silica and silane.

Properties of Coating Films Synthesized from Colloidal Silica and UV-curable Acrylate resin (UV경화형 아크릴 수지와 콜로이드 실리카로 합성된 코팅막의 특성)

  • Kang, Young-Taec;Kang, Dong-Pil;Han, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.551-552
    • /
    • 2007
  • Coating films were prepared from silane-terminated Colloidal silaca(CS) and UV-curable acrylate resin. The silane-terminated CSs were synthesized from CS and methyltrimethoxysilane(MTMS) and then treated with 3-methacryloxypropyltrimethoxysilane(MAPTMS)/3-glycidoxypropyltrimethoxysilane( GPTMS)/vinyltrimethoxysilane(VTMS) by sol-gel process, respectively. The silane-terminated CS and acrylate resin were hybridized using UV-curing system. Thin films of hybrid material were prepared using spin coater on the glass. Their hardness, contact angle and transmittance improved with the addition of silane-terminated CS.

  • PDF

Spectroscopic Analysis of Silica Nanoparticles Modified with Silane Coupling Agent (실란 커플링제에 의해 표면이 개질된 실리카 나노입자의 분광학적 분석)

  • Song, Seong-Kyu;Kim, Jung-Hye;Hwang, Ki-Seob;Ha, Ki-Ryong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • In this study, we used 3-(trimethoxysilyl)propylmethacrylate(MPS) silane coupling agent for surface modification of silica nanoparticles. We studied effects of reaction conditions such as solvent pH, MPS hydrolysis time, reaction time, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, on the surface modification reactions of silica nanoparticles. Fourier Transform Infrared Spectroscopy(FTIR), Elemental Analysis(EA) and solid state crosspolarization magic angle spinning(CP/MAS) Nuclear Magnetic Resonance Spectroscopy(NMR) techniques were used to determine the type and the degree of surface modification. We found MPS reacts preferentially with Si-OH groups of the silica nanoparticles as monomeric form at solvent pH = 4.5. But increasing hydrolysis time of MPS from 30 mins to 90 mins, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, we found that MPS reacts preferentially with Si-OH groups of the silica nanoparticles as oligomeric form.

Observation of Interfacial Adhesion in Silica-NR Compound by Using Bifunctional Silane Coupling Agent (양기능성 커플링제 실란에 의한 실리카-천연고무 복합소재의 계면간 결합 고찰)

  • Lee, Jong-Young;Kim, Sung Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.240-246
    • /
    • 2015
  • Formation of a strong 3-dimensional interfacial network structure via chemical reaction between hydroxyl group on silica surface and NR chain by the addition of bis(triethoxysilylpropyl)tetrasulfide (TESPT) into silica-filled NR compound was observed by using Py-GC/MS and SEM. Addition of TESPT into silica-filled NR compound decreased scorch time ($t_{10}$) due to increased sulfur content, and reduced cure rate index (CRI) via continuous reaction between sulfur atoms in TESPT, which acted as a sulfur donor, and activators and/or accelerators. Addition of TESPT in the compound improved processability and mechanical properties of the compound. Overall, we observed that the addition of TESPT into the silica-filled NR compound formed a silica-TESPT-NR network, and thus the degree of crosslinking was increased resulting in improved mechanical properties.