• Title/Summary/Keyword: signature-based detection

Search Result 203, Processing Time 0.026 seconds

A Study on Anomaly Signal Detection and Management Model using Big Data (빅데이터를 활용한 이상 징후 탐지 및 관리 모델 연구)

  • Kwon, Young-baek;Kim, In-seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.287-294
    • /
    • 2016
  • APT attack aimed at the interruption of information and communication facilities and important information leakage of companies. it performs an attack using zero-day vulnerabilities, social engineering base on collected information, such as IT infra, business environment, information of employee, for a long period of time. Fragmentary response to cyber threats such as malware signature detection methods can not respond to sophisticated cyber-attacks, such as APT attacks. In this paper, we propose a cyber intrusion detection model for countermeasure of APT attack by utilizing heterogeneous system log into big-data. And it also utilizes that merging pattern-based detection methods and abnormality detection method.

A FRF-based algorithm for damage detection using experimentally collected data

  • Garcia-Palencia, Antonio;Santini-Bell, Erin;Gul, Mustafa;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.399-418
    • /
    • 2015
  • Automated damage detection through Structural Health Monitoring (SHM) techniques has become an active area of research in the bridge engineering community but widespread implementation on in-service infrastructure still presents some challenges. In the meantime, visual inspection remains as the most common method for condition assessment even though collected information is highly subjective and certain types of damage can be overlooked by the inspector. In this article, a Frequency Response Functions-based model updating algorithm is evaluated using experimentally collected data from the University of Central Florida (UCF)-Benchmark Structure. A protocol for measurement selection and a regularization technique are presented in this work in order to provide the most well-conditioned model updating scenario for the target structure. The proposed technique is composed of two main stages. First, the initial finite element model (FEM) is calibrated through model updating so that it captures the dynamic signature of the UCF Benchmark Structure in its healthy condition. Second, based upon collected data from the damaged condition, the updating process is repeated on the baseline (healthy) FEM. The difference between the updated parameters from subsequent stages revealed both location and extent of damage in a "blind" scenario, without any previous information about type and location of damage.

A Study of Logical Network Partition and Behavior-based Detection System Using FTS (FTS를 이용한 논리적 망 분리와 행위기반 탐지 시스템에 관한 연구)

  • Kim, MinSu;Shin, SangIl;Ahn, ChungJoon;Kim, Kuinam J.
    • Convergence Security Journal
    • /
    • v.13 no.4
    • /
    • pp.109-115
    • /
    • 2013
  • Security threats through e-mail service, a representative tool to convey information on the internet, are on the sharp rise. The security threats are made in the path where malicious codes are inserted into documents files attached and infect users' systems by taking advantage of the weak points of relevant application programs. Therefore, to block infection of camouflaged malicious codes in the course of file transfer, this work proposed an integrity-checking and behavior-based detection system using File Transfer System (FTS), logical network partition, and conducted a comparison analysis with the conventional security techniques.

Host-Based Malware Variants Detection Method Using Logs

  • Joe, Woo-Jin;Kim, Hyong-Shik
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.851-865
    • /
    • 2021
  • Enterprise networks in the PyeongChang Winter Olympics were hacked in February 2018. According to a domestic security company's analysis report, attackers destroyed approximately 300 hosts with the aim of interfering with the Olympics. Enterprise have no choice but to rely on digital vaccines since it is overwhelming to analyze all programs executed in the host used by ordinary users. However, traditional vaccines cannot protect the host against variant or new malware because they cannot detect intrusions without signatures for malwares. To overcome this limitation of signature-based detection, there has been much research conducted on the behavior analysis of malwares. However, since most of them rely on a sandbox where only analysis target program is running, we cannot detect malwares intruding the host where many normal programs are running. Therefore, this study proposes a method to detect malware variants in the host through logs rather than the sandbox. The proposed method extracts common behaviors from variants group and finds characteristic behaviors optimized for querying. Through experimentation on 1,584,363 logs, generated by executing 6,430 malware samples, we prove that there exist the common behaviors that variants share and we demonstrate that these behaviors can be used to detect variants.

Identification and Validation of Circulating MicroRNA Signatures for Breast Cancer Early Detection Based on Large Scale Tissue-Derived Data

  • Yu, Xiaokang;Liang, Jinsheng;Xu, Jiarui;Li, Xingsong;Xing, Shan;Li, Huilan;Liu, Wanli;Liu, Dongdong;Xu, Jianhua;Huang, Lizhen;Du, Hongli
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.363-370
    • /
    • 2018
  • Purpose: Breast cancer is the most commonly occurring cancer among women worldwide, and therefore, improved approaches for its early detection are urgently needed. As microRNAs (miRNAs) are increasingly recognized as critical regulators in tumorigenesis and possess excellent stability in plasma, this study focused on using miRNAs to develop a method for identifying noninvasive biomarkers. Methods: To discover critical candidates, differential expression analysis was performed on tissue-originated miRNA profiles of 409 early breast cancer patients and 87 healthy controls from The Cancer Genome Atlas database. We selected candidates from the differentially expressed miRNAs and then evaluated every possible molecular signature formed by the candidates. The best signature was validated in independent serum samples from 113 early breast cancer patients and 47 healthy controls using reverse transcription quantitative real-time polymerase chain reaction. Results: The miRNA candidates in our method were revealed to be associated with breast cancer according to previous studies and showed potential as useful biomarkers. When validated in independent serum samples, the area under curve of the final miRNA signature (miR-21-3p, miR-21-5p, and miR-99a-5p) was 0.895. Diagnostic sensitivity and specificity were 97.9% and 73.5%, respectively. Conclusion: The present study established a novel and effective method to identify biomarkers for early breast cancer. And the method, is also suitable for other cancer types. Furthermore, a combination of three miRNAs was identified as a prospective biomarker for breast cancer early detection.

A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient (Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구)

  • Lee, Gye-Hyeok;Hwang, Min-Chae;Hyun, Dong-Yeop;Ku, Young-In;Yoo, Dong-Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.363-372
    • /
    • 2022
  • Since the recent COVID-19 Pandemic, the ransomware fandom has intensified along with the expansion of remote work. Currently, anti-virus vaccine companies are trying to respond to ransomware, but traditional file signature-based static analysis can be neutralized in the face of diversification, obfuscation, variants, or the emergence of new ransomware. Various studies are being conducted for such ransomware detection, and detection studies using signature-based static analysis and behavior-based dynamic analysis can be seen as the main research type at present. In this paper, the frequency of ".text Section" Opcode and the Native API used in practice was extracted, and the association between feature information selected using K-means Clustering algorithm, Cosine Similarity, and Pearson correlation coefficient was analyzed. In addition, Through experiments to classify and detect worms among other malware types and Cerber-type ransomware, it was verified that the selected feature information was specialized in detecting specific ransomware (Cerber). As a result of combining the finally selected feature information through the above verification and applying it to machine learning and performing hyper parameter optimization, the detection rate was up to 93.3%.

An Efficient BotNet Detection Scheme Exploiting Word2Vec and Accelerated Hierarchical Density-based Clustering (Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한 효율적 봇넷 탐지 기법)

  • Lee, Taeil;Kim, Kwanhyun;Lee, Jihyun;Lee, Suchul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.11-20
    • /
    • 2019
  • Numerous enterprises, organizations and individual users are exposed to large DDoS (Distributed Denial of Service) attacks. DDoS attacks are performed through a BotNet, which is composed of a number of computers infected with a malware, e.g., zombie PCs and a special computer that controls the zombie PCs within a hierarchical chain of a command system. In order to detect a malware, a malware detection software or a vaccine program must identify the malware signature through an in-depth analysis, and these signatures need to be updated in priori. This is time consuming and costly. In this paper, we propose a botnet detection scheme that does not require a periodic signature update using an artificial neural network model. The proposed scheme exploits Word2Vec and accelerated hierarchical density-based clustering. Botnet detection performance of the proposed method was evaluated using the CTU-13 dataset. The experimental result shows that the detection rate is 99.9%, which outperforms the conventional method.

Intelligent Android Malware Detection Using Radial Basis Function Networks and Permission Features

  • Abdulrahman, Ammar;Hashem, Khalid;Adnan, Gaze;Ali, Waleed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.286-293
    • /
    • 2021
  • Recently, the quick development rate of apps in the Android platform has led to an accelerated increment in creating malware applications by cyber attackers. Numerous Android malware detection tools have utilized conventional signature-based approaches to detect malware apps. However, these conventional strategies can't identify the latest apps on whether applications are malware or not. Many new malware apps are periodically discovered but not all malware Apps can be accurately detected. Hence, there is a need to propose intelligent approaches that are able to detect the newly developed Android malware applications. In this study, Radial Basis Function (RBF) networks are trained using known Android applications and then used to detect the latest and new Android malware applications. Initially, the optimal permission features of Android apps are selected using Information Gain Ratio (IGR). Appropriately, the features selected by IGR are utilized to train the RBF networks in order to detect effectively the new Android malware apps. The empirical results showed that RBF achieved the best detection accuracy (97.20%) among other common machine learning techniques. Furthermore, RBF accomplished the best detection results in most of the other measures.

Machine Learning-Based Malicious URL Detection Technique (머신러닝 기반 악성 URL 탐지 기법)

  • Han, Chae-rim;Yun, Su-hyun;Han, Myeong-jin;Lee, Il-Gu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.555-564
    • /
    • 2022
  • Recently, cyberattacks are using hacking techniques utilizing intelligent and advanced malicious codes for non-face-to-face environments such as telecommuting, telemedicine, and automatic industrial facilities, and the damage is increasing. Traditional information protection systems, such as anti-virus, are a method of detecting known malicious URLs based on signature patterns, so unknown malicious URLs cannot be detected. In addition, the conventional static analysis-based malicious URL detection method is vulnerable to dynamic loading and cryptographic attacks. This study proposes a technique for efficiently detecting malicious URLs by dynamically learning malicious URL data. In the proposed detection technique, malicious codes are classified using machine learning-based feature selection algorithms, and the accuracy is improved by removing obfuscation elements after preprocessing using Weighted Euclidean Distance(WED). According to the experimental results, the proposed machine learning-based malicious URL detection technique shows an accuracy of 89.17%, which is improved by 2.82% compared to the conventional method.

A Scalable Distributed Worm Detection and Prevention Model using Lightweight Agent (경량화 에이전트를 이용한 확장성 있는 분산 웜 탐지 및 방지 모델)

  • Park, Yeon-Hee;Kim, Jong-Uk;Lee, Seong-Uck;Kim, Chol-Min;Tariq, Usman;Hong, Man-Pyo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.517-521
    • /
    • 2008
  • A worm is a malware that propagates quickly from host to host without any human intervention. Need of early worm detection has changed research paradigm from signature based worm detection to the behavioral based detection. To increase effectiveness of proposed solution, in this paper we present mechanism of detection and prevention of worm in distributed fashion. Furthermore, to minimize the worm destruction; upon worm detection we propagate the possible attack aleγt to neighboring nodes in secure and organized manner. Considering worm behavior, our proposed mechanism detects worm cycles and infection chains to detect the sudden change in network performance. And our model neither needs to maintain a huge database of signatures nor needs to have too much computing power, that is why it is very light and simple. So, our proposed scheme is suitable for the ubiquitous environment. Simulation results illustrate better detection and prevention which leads to the reduction of infection rate.