• 제목/요약/키워드: signature-based classifier

검색결과 16건 처리시간 0.023초

Detection of Forged Signatures Using Directional Gradient Spectrum of Image Outline and Weighted Fuzzy Classifier

  • Kim, Chang-Kyu;Han, Soo-Whan
    • 한국멀티미디어학회논문지
    • /
    • 제7권12호
    • /
    • pp.1639-1649
    • /
    • 2004
  • In this paper, a method for detection of forged signatures based on spectral analysis of directional gradient density function and a weighted fuzzy classifier is proposed. The well defined outline of an incoming signature image is extracted in a preprocessing stage which includes noise reduction, automatic thresholding, image restoration and erosion process. The directional gradient density function derived from extracted signature outline is highly related to the overall shape of signature image, and thus its frequency spectrum is used as a feature set. With this spectral feature set, having a property to be invariant in size, shift, and rotation, a weighted fuzzy classifier is evaluated for the verification of freehand and random forgeries. Experiments show that less than 5% averaged error rate can be achieved on a database of 500 signature samples.

  • PDF

Freehand Forgery Detection Using Directional Density and Fuzzy Classifier

  • Han, Soowhan;Woo, Youngwoon
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.250-255
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional 5$\times$5 gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether genuine or forged with more than 98% overall accuracy even without any knowledge of vaned freehand forgeries.

  • PDF

가중치 퍼지분류기와 방향성 밀도함수를 이용한 오프라인 서명 검증에 관한 연구 (A Study on Off-Line Signature Verification using Directional Density Function and Weighted Fuzzy Classifier)

  • 한수환;이종극
    • 한국멀티미디어학회논문지
    • /
    • 제3권6호
    • /
    • pp.592-603
    • /
    • 2000
  • 본 논문에서는 12개의 방향성 $5\times{5}$ 그라디언트 마스크를 서명영상에 적용하여 추출한 밀도함수와 가중치 평균퍼지 분류기를 사용하여 오프라인 서명 검증기법을 연구하였다. Nevatia-Babu 그라디언트 마스크에 근간을 두고 추출한 12방향에 대한 밀도함수는 서명영상의 전체적인 형태와 연관이 있어 본 연구의 특징벡터로 사용되었다. 가중치 평균 퍼지분류기의 판단기준이 되는 특징벡터들의 집합은 친필 서명샘플들에서만 추출되어 위조서명의 검출에 적용되었다. 본 논문의 실험결과는 제안된 시스템이 다양한 위조서명에 관한 어떤 사전지식이 없다할지라도 77% 이상의 높은 검증률로 서명영상의 진위여부를 가려낼 수 있음을 보였다.

  • PDF

구간분할 매칭방법과 선형판별분석기법을 융합한 온라인 서명 검증 (On-line Signature Verification using Segment Matching and LDA Method)

  • 이대종;고현주;전명근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권12호
    • /
    • pp.1065-1074
    • /
    • 2007
  • 기존의 참조서명과 입력서명을 비교하는 방법 중 분절 단위 비교 방법은 전역적 비교와 점 단위 비교 방법과 비교하여 우수한 장점을 가지고 있다. 그러나 분절 단위 비교 방법은 인식률과 직접적인 관계가 있는 분절의 불안정 문제점이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분절단위 방법 외에 선형판별분석에 의한 매칭방법을 고려한 서명 검증 기법을 제안한다. 최종 검증단계에서 두 개의 독립모델을 효과적으로 융합할 수 있는 확률기반의 베이지안 분류기를 적용하였다 다양한 서명데이타를 이용하여 실험한 결과 제안된 기법은 분절단위 기반 구간분할매칭 기법에 비해 우수한 성능을 나타냈다.

구간 분할 및 HMM 기반 융합 모델에 의한 온라인 서명 검증 (On-line Signature Verification Using Fusion Model Based on Segment Matching and HMM)

  • 양동화;이대종;전명근
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.12-17
    • /
    • 2005
  • 기존의 참조서명과 입력서명을 비교하는 방법 쿵 분절 단위 비교 방법은 전역적 방법과 점 단위 방법에 비하여 우수한 장점을 가지고 있다. 그러나 분절 단위 비교 방법은 인식률과 직접적인 관계가 있는 분절의 불안정 문제점이 있다. 본 연구에서는 분절 단위 비교 방법을 이용한 서명검증의 신뢰도를 향상시키기 위해 두 가지 형태의 모델을 구축하였다. 우선 기존에 사용된 구간 분할 매칭 방법을 사용하여 서명의 동적정보에 대한 매칭도를 산출하였다. 다음으로 서명의 정적정보를 균일하게 분할한 후 분할된 영역을 주성분 분석 기법에 의해 특징 벡터를 산출하고 HMM에 의해 서명간의 매칭도를 산출하였다. 최종 융합단계에서는 SVM 분류기에 의해 서명의 진위여부를 결정하도록 구축하였다. 실험 결과 제안된 기법은 분절단위 기반의 구간 분할 매칭 기법에 비해 우수한 성능을 나타냈다.

3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계 (Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition)

  • 오성권;오승훈
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.

개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법 (P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms)

  • 예우지엔;조경산
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.45-54
    • /
    • 2014
  • 본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.

A New Approach For Off-Line Signature Verification Using Fuzzy ARTMAP

  • Hsn, Doowhan
    • 한국지능시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.33-40
    • /
    • 1995
  • This paper delas with the detection of freehand forgeries of signatures based on the averaged directional amplitudes of gradient vetor which are related to the overall shape of the handwritten signature and fuzzy ARTMAP neural network classifier. In the first step, signature images are extracted from the background by a process involving noise reduction and automatic thresholding. Next, twelve directional amplitudes of gradient vector for each pixel on the signature line are measure and averaged through the entire signature image. With these twelve averaged directional gradient amplitudes, the fuzzy ARTMAP neural network is trained and tested for the detection of freehand forgeries of singatures. The experimental results show that the fuzzy ARTMAP neural network cna lcassify a signature whether genuine or forged with greater than 95% overall accuracy.

  • PDF

스캔 영상 기반의 밀리미터파(Ka 밴드) 복합모드 탐색기 표적인식 알고리즘 연구 (Target Recognition Algorithm Based on a Scanned Image on a Millimeter-Wave(Ka-Band) Multi-Mode Seeker)

  • 노경아;정준영;송성찬
    • 한국전자파학회논문지
    • /
    • 제30권2호
    • /
    • pp.177-180
    • /
    • 2019
  • 유도무기의 명중률 개선을 위해 해상 클러터 환경에서 표적을 정확하게 탐지하고 인식하는 연구가 다수 수행되고 있다. 해상 표적과 클러터의 신호가 다양하고 복잡한 특성을 보이기 때문에 능동 표적인식 기술에 대한 연구가 필수적으로 요구된다. 본 논문에서는 스캔 영상(scan image)으로 형성된 이미지에 프랙탈 차원기법(fractal dimension)인 FS(Fractal Signature) 분류기와 영상정합기법(scene matching)인 HRTI(High Resolution Target Image)을 적용하여 표적과 클러터를 구분하고 표적 간의 인식하는 알고리즘을 제안한다. 알고리즘을 적용한 시뮬레이션 수행 결과, HRTI 분류기는 표적1과 표적2를 모두 100 %, FS 분류기는 표적 1과 표적 2를 각 각 90 %, 93 % 이상 구분 및 인식한다.

최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘 설계 (Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner)

  • 마창민;유성훈;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.748-753
    • /
    • 2012
  • 본 논문에서는 최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘을 설계한다. 일반적으로 2차원 영상을 이용한 얼굴인식 시스템은 사진의 명암도를 이용하여 얼굴의 특징을 추출하게 된다. 그렇기 때문에 빛이나 조명, 또는 얼굴 포즈와 같은 환경 변화들은 시스템의 성능을 저하시킨다. 따라서 본 논문에서 제안된 얼굴인식 알고리즘은 2차원 얼굴인식 시스템의 한계를 극복하기 위하여 3차원 스캐너를 사용하여 설계한다. 먼저 3차원 스캐너를 이용하여 얼굴 형상을 스캔하고 스캔된 얼굴 형상은 포즈 보상 과정을 통하여 정면으로 변환된다. 그 후에 Point Signature 기법을 사용하여 얼굴의 깊이 정보를 추출하고 마지막으로 고차원 패턴인식 문제에 대한 해결을 위하여 최적화된 pRBFNNs (Polynomial-based Radial Basis Function Neural Networks) 모델을 사용하여 인식성능을 확인한다.