• 제목/요약/키워드: signal treatment

검색결과 1,164건 처리시간 0.035초

Inhibition of Adipocyte Differentiation by MeOH Extract from Carduus crispus through ERK and p38 MAPK Pathways

  • Lee, Eun-Jeong;Joo, Eun-Ji;Hong, Yoo-Na;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • 제17권4호
    • /
    • pp.273-278
    • /
    • 2011
  • In this study, the effects of a methanol (MeOH) extract of Carduus crispus L. (Asteraceae) on adipogenesis was investigated in 3T3-L1 cells. To differentiate preadipocytes to adipocytes, confluent 3T3-L1 preadipocytes were treated with a hormone mixture, which included isobutylmethylxanthine, dexamethasone, and insulin (MDI). The methanol extract of C. crispus significantly decreased fat accumulation by inhibiting adipogenic signal transcriptional factors in MDI-induced 3T3-L1 cells in a dose-dependent manner. In MTT assays and on PI-staining, methanol extract of C. crispus inhibited the proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE). The anti-adipogenic effect of the Carduus extract seemed to be associated with the upregulation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathways within the first 2 days after MDI treatment. These results suggest that methanol extract of C. crispus might be beneficial for the treatment of obesity.

속립성 뇌결핵의 초기 자기공명영상 소견과 치료 후 변화 (MR Imaging of Disseminated Tuberculosis of the Brain in a Patient with Miliary Tuberculosis : Initial Findings and Changes Six Months after Antituberculous Therapy)

  • 장재호;임재우;정순이;최규철;한태일
    • Clinical and Experimental Pediatrics
    • /
    • 제45권12호
    • /
    • pp.1596-1600
    • /
    • 2002
  • 저자들은 속립성 결핵으로 진단한 23개월된 여아에서 신경학적인 증상이 나타나기 전인 초기의 속립성 뇌결핵에서 뇌자기공명영상 소견 및 치료에 따른 경시적 호전 양상의 변화를 자기공명영상소견으로 얻었기에 보고하는 바이다.

루테올린의 간암세포 성장 억제효능 및 새로운 작용기전 (Anti-cancer Effects of Luteolin and Its Novel Mechanism in HepG2 Hepatocarcinoma Cell)

  • 황진택;양혜정
    • KSBB Journal
    • /
    • 제25권6호
    • /
    • pp.507-512
    • /
    • 2010
  • In this study, we investigated the ability of luteolin, a plant derived flavonoid on hepatocarcinoma cell growth using HepG2 cell culture system. We found that luteolin increased the Smac/DIABLO releases, a mitochondrial protein that potentiates apoptosis. Luteolin also induced either transcriptional activity or expression of PPAR-gamma, a target of cancer growth that PPAR-gamma agonist sensitizes to apoptosis in certain cancer types. To find the possible upstream target molecules of PPAR-gamma activated by luteolin treatment, we used compound C, a specific inhibitor of AMP-activated protein kinase. Pre-treatment of Compound C significantly restored the activation or expression of PPAR-gamma stimulated by luteolin. This result indicated that AMPK signaling might be involved in the activation or expression of PPAR-gamma signaling pathway stimulated by luteolin. Moreover, we also found that luteolin inhibited the insulin-stimulated Akt phosphorylation as well as AICAR, a specific AMPK activator. These results propose that luteolin significantly induces cancer cell death through modulating survival signal pathways such as PPAR-gamma and Akt. AMPK signaling pathway may be an upstream regulator for survival signal pathways such as PPAR-gamma and Akt stimulated by luteolin.

Antimetastatic effect of fucoidan against non-small cell lung cancer by suppressing non-receptor tyrosine kinase and extracellular signal-related kinase pathway

  • Nareenath Muneerungsee;Supita Tanasawet;Wanida Sukketsiri
    • Nutrition Research and Practice
    • /
    • 제17권5호
    • /
    • pp.844-854
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Fucoidan, a polysaccharide content in brown algae, has been reported to inhibit the growth of cancer cells. The present study aimed to investigate the suppression effects of fucoidan on A549 non-small cell lung cancer cells migration. MATERIALS/METHODS: The anti-migratory activity of fucoidan in A549 cells was examined by wound healing assay and phalloidin-rhodamine staining in response to fucoidan (0-100 ㎍/mL) treatment for 48 h. Western blot analysis was performed to clarify the protein expressions relevant to migratory activity. RESULTS: Fucoidan (25-100 ㎍/mL) significantly suppressed A549 cells migration together with reduced the intensity of phalloidin-rhodamine which detect filopodia and lamellipodia protrusions at 48 h of treatment. The protein expression indicated that fucoidan significantly suppressed the phosphorylation of focal adhesion kinase (FAK), Src, and extracellular signal-related kinase (ERK). In addition, the phosphorylation of p38 in A549 cells was found to be increased. CONCLUSIONS: Our data conclude that fucoidan exhibits anti-migratory activities against lung cancer A549 cells mediated by inhibiting ERK1/2 and FAK-Src pathway.

감마선 조사된 배추 및 브로콜리의 전처리방법에 따른 전자스핀공명분석 특성 (Characterization and Identification of Gamma-Irradiated Kimchi Cabbage and Broccoli by Electron Spin Resonance Spectroscopy using Different Sample Pre-treatments)

  • 곽지영;안재준;;김귀란;권중호
    • 한국식품과학회지
    • /
    • 제44권5호
    • /
    • pp.532-539
    • /
    • 2012
  • 섬유소 식품의 조사처리 여부 확인에서 전자스핀공명분석법의 개선을 위한 기초자료를 마련하고자, 감마선 조사된 브로콜리와 배추의 전처리 건조방법(FD, OD, ALD, 및 WAD)에 따른 cellulose radical을 분석 비교하였다. 브로콜리 시료에서는 single central signal($g_0$=2.0007)이 나타났으며, 배추 시료에서는 single central signal 외에 $Mn^{2+}$ ion에 의한 sextet signal이 추가로 발견되었다. 조사처리한 채소류에서는 singlet signal을 중심으로 좌우 두 개의 side peak가 나타났으며, 각 side peak의 거리는 5.8-6.1 mT로 조사처리 유래의 cellulose radical임을 확인할 수 있었다. 채소류의 부위별로 ESR spectra를 비교한 결과, 배추는 뿌리와 줄기, 브로콜리는 잎, 줄기 모두 조사처리 여부를 판별하는데 있어 적합하였다. 건조 방법별로는 FD와 OD 처리 시 ESR 강도는 더 높았으나, $Mn^{2+}$ ion과 함께 나타나 명확한 signal을 얻기 어려웠다. 반면, ALD와 WAD 방법의 경우 $Mn^{2+}$ ion이 제거되고, signal ratio도 적합하게 나타나 조사 처리된 채소류의 ESR 판별시, ALD와 WAD 방법이 가장 적합할 것으로 판단되었다.

6-Hydroxydopamine-induced Adaptive Increase in GSH Is Dependent on Reactive Oxygen Species and Ca2+ but not on Extracellular Signal-regulated Kinase in SK-N-SH Human Neuroblastoma Cells

  • JIN Da-Qing;Park Byung CHUL;KIM Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • 제13권4호
    • /
    • pp.256-262
    • /
    • 2005
  • We examined the signaling molecules involved in the 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and increase in cellular glutathione (GSH) level in SK-N-SH cells. The 6-OH-DA-induced cell death was significantly prevented by the pretreatment with N-acetylcysteine (NAC), a thiol antioxidant, and BAPTA, an intracellular $Ca^{2+}$ chelator. Although 6-OHDA induced ERK phosphorylation, the pretreatment with PD98059, an ERK inhibitor, did not block 6-OHDA-induced cell death. In addition, the 6-OHDA-induced activation of caspase-3, a key signal for apoptosis, was blocked by the pretreatment with NAC and BAPTA. While the level of reactive oxygen species (ROS) was significantly increased in the 6-OHDA-treated cells, the cellular GSH level was not altered for the first 6-hr exposure to 6-OHDA, but after then, the level was significantly increased, which was also blocked by the pretreatment with NAC and BAPTA, but not by PD98059. Depletion of GSH by pretreating the cells with DL-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthesis inhibitor, rather significantly potentiated the 6-OHDA-induced death. In contrast to the pretreatment with NAC, 6-OHDA-induced cell death was not prevented by the post-treatment with NAC 30 min after 6-OHDA treatment. The results indicate that the GSH level which is increased adaptively by the 6-OHDA-induced ROS and intracellular $Ca^{2+}$ is not enough to overcome the death signal mediated through ROS-$Ca^{2+}$ -caspase pathway.

비정상 호흡 감지를 위한 신호 분석 (Signal Analysis for Detecting Abnormal Breathing)

  • 김현진;김진현
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.249-254
    • /
    • 2020
  • It is difficult to control children who exhibit negative behavior in dental clinics. Various methods are used for preventing pediatric dental patients from being afraid and for eliminating the factors that cause psychological anxiety. However, when it is difficult to apply this routine behavioral control technique, sedation therapy is used to provide quality treatment. When the sleep anesthesia treatment is performed at the dentist's clinic, it is challenging to identify emergencies using the current breath detection method. When a dentist treats a patient that is under the influence of an anesthetic, the patient is unconscious and cannot immediately respond, even if the airway is blocked, which can cause unstable breathing or even death in severe cases. During emergencies, respiratory instability is not easily detected with first aid using conventional methods owing to time lag or noise from medical devices. Therefore, abnormal breathing needs to be evaluated in real-time using an intuitive method. In this paper, we propose a method for identifying abnormal breathing in real-time using an intuitive method. Respiration signals were measured using a 3M Littman electronic stethoscope when the patient's posture was supine. The characteristics of the signals were analyzed by applying the signal processing theory to distinguish abnormal breathing from normal breathing. By applying a short-time Fourier transform to the respiratory signals, the frequency range for each patient was found to be different, and the frequency of abnormal breathing was distributed across a broader range than that of normal breathing. From the wavelet transform, time-frequency information could be identified simultaneously, and the change in the amplitude with the time could also be determined. When the difference between the amplitude of normal breathing and abnormal breathing in the time domain was very large, abnormal breathing could be identified.

Aquaporin 8 Involvement in Human Cervical Cancer SiHa Migration via the EGFR-Erk1/2 Pathway

  • Shi, Yong-Hua;Tuokan, Talaf;Lin, Chen;Chang, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6391-6395
    • /
    • 2014
  • Overexpression of aquaporins (AQPs) has been reported in several human cancers. Epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinases 1/2 (Erk1/2) are associated with tumorigenesis and cancer progression and may upregulate AQP expression. In this study, we demonstrated that EGF (epidermal growth factor) induces SiHa cells migration and AQP8 expression. Wound healing results showed that cell migration was increased by 2.79-1.50-fold at 24h and 48h after EGF treatment. AQP8 expression was significantly increased (3.33-fold) at 48h after EGF treatment in SiHa cells. An EGFR kinase inhibitor, PD153035, blocked EGF-induced AQP8 expression and cell migration and AQP8 expression was decreased from 1.59-fold (EGF-treated) to 0.43-fold (PD153035-treated) in SiHa. Furthermore, the MEK (MAPK (mitogen-activated protein kinase)/Erk (extracellular signal regulated kinase)/Erk inhibitor U0126 also inhibited EGF-induced AQP8 expression and cell migration. AQP8 expression was decreased from 1.21-fold (EGF-treated) to 0.43-fold (U0126-treated). Immunofluorescence microscopy further confirmed the results. Collectively, our findings show that EGF induces AQP8 expression and cell migration in human cervical cancer SiHa cells via the EGFR/Erk1/2 signal transduction pathway.

헬스 케어를 위한 무선 모니터링 시스템 구현 (An Implementation of Wireless Monitoring System for Health Care)

  • 엄상희;남재현;장용훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.67-71
    • /
    • 2007
  • 최근 고령 인구의 증가에 따른 헬스 케어 수요가 증가하고 있고 환자뿐만 아니라 일반인들에게서도 헬스 케어 모니터링에 대한 요구가 급증하고 있다. 또한 의료 서비스를 제공받으려는 대상자의 불편을 최소화하고, 지속적인 모니터링을 통한 헬스 케어가 가능할 수 있는 의료 기술과 의료 정보서비스에 대한 수요도 늘어나고 있는 추세이다 본 논문에서는 헬스 케어를 위한 무선 생체 신호 모니터링 시스템을 구현하였다. 구현된 시스템은 생세 신호 측정부와 무선 통신부로 구성된 센서 노드(sensor node)와 원격 시스템의 모니터링 프로그램으로 구성된다. 센서 노드에서는 심전도, 혈압, 맥파, 동맥혈산소포화도, 심박수를 측정할 수 있고 블루투스 기술을 이용하여 무선 전송을 하여 모니터링 시스템에서 실시간 무선 모니터링이 가능하도록 구현하였다.

  • PDF

Arachidonic Acid Activates $K^+$-$Cl^-$-cotransport in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.401-408
    • /
    • 2009
  • $K^+$-$Cl^-$-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced $K^+$ efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7 -dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1Hinden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activatorinduced $K^+$ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calciumindependent $PLA_2$ ($iPLA_2$), whereas it was not significantly altered by arachidonyl trifluoromethylketone ($AACOCF_3$) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. NEM increased AA liberation in a doseand time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas $AACOCF_3$ and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that $iPLA_2$-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.