• Title/Summary/Keyword: signal recognition

Search Result 1,278, Processing Time 0.029 seconds

Temperature Classification of Heat-treated Metals using Pattern Recognition of Ultrasonic Signal (초음파 신호의 패턴 인식에 의한 금속의 열처리 온도 분류)

  • Im, Rae-Muk;Sin, Dong-Hwan;Kim, Deok-Yeong;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1544-1553
    • /
    • 1999
  • Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.

  • PDF

A Study on the Digital Signal Processing for the Pattern fiecognition of Weld Flaws (용접결함의 패턴인식을 위한 디지털 신호처리에 관한 연구)

  • 김재열;송찬일;김병현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.393-396
    • /
    • 1995
  • In this syudy, the researches classifying the artificial and natural flaws in welding parts are performed using the smart pattern recognition technology. For this purpose the smart signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing,feature extraction , feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear disciminant function classifier, the empirical Bayesian classifier. Also, the smart pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack,lack of penetration,lack of fusion,porosity,and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately learned the neural network classifier is better than ststistical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.

  • PDF

Position of Intersection Recognition and Tum Signal Operation Approaching at Target Intersection (교차로 인지와 방향지시등 조작 지점에 관한 검토)

  • Jeon, Yong-Wook;Tatsmu, Daimon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.65-70
    • /
    • 2009
  • In-vehicle route guidance information(RGI) systems have been developed with the advancement of the information and communication technologies. However, the RGI is provided by a pre-determined option, drivers occasionally pass the target intersection owing to non- or late- recognizing it. The purpose of this experiment is to examine the position of driver's tum signal operation and intersection recognition approaching at the target intersection which is difficult to identify as a preliminary research on developing the additional RGI connecting with the tum signal control. The field experiment was conducted to measure distances of the turn signal operation and intersection recognition from the target intersection according to driving lanes and landmarks at adjacent intersection. And, glance behavior to the car navigation display was evaluated by using an eye camera. The results indicate that drivers operate the turn signal after confirming a landmark in the case of the intersection with it. However, most case of driving, drivers operate the tum signal at 40 to 50m before coming to the target. To provide the additional RGI, when drivers do not operate the tum signal approaching at the target intersection based on the results, is expected to improve the traffic safety and the comfort for drivers.

Recognition of Radar Emitter Signals Based on SVD and AF Main Ridge Slice

  • Guo, Qiang;Nan, Pulong;Zhang, Xiaoyu;Zhao, Yuning;Wan, Jian
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.491-498
    • /
    • 2015
  • Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.

Voice Recognition-Based on Adaptive MFCC and Deep Learning for Embedded Systems (임베디드 시스템에서 사용 가능한 적응형 MFCC 와 Deep Learning 기반의 음성인식)

  • Bae, Hyun Soo;Lee, Ho Jin;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.797-802
    • /
    • 2016
  • This paper proposes a noble voice recognition method based on an adaptive MFCC and deep learning for embedded systems. To enhance the recognition ratio of the proposed voice recognizer, ambient noise mixed into the voice signal has to be eliminated. However, noise filtering processes, which may damage voice data, diminishes the recognition ratio. In this paper, a filter has been designed for the frequency range within a voice signal, and imposed weights are used to reduce data deterioration. In addition, a deep learning algorithm, which does not require a database in the recognition algorithm, has been adapted for embedded systems, which inherently require small amounts of memory. The experimental results suggest that the proposed deep learning algorithm and HMM voice recognizer, utilizing the proposed adaptive MFCC algorithm, perform better than conventional MFCC algorithms in its recognition ratio within a noisy environment.

The Effect of Signal-to-Noise Ratio on Sentence Recognition Performance in Pre-school Age Children with Hearing Impairment (청각장애 유소아의 신호대소음비에 따른 문장인지 능력)

  • Lee, Mi-Sook
    • Phonetics and Speech Sciences
    • /
    • v.3 no.1
    • /
    • pp.117-123
    • /
    • 2011
  • Most individuals with hearing impairment have difficulty in understanding speech in noisy situations. This study was conducted to investigate sentence recognition ability using the Korean Standard-Sentence Lists for Preschoolers (KS-SL-P2) in pre-school age children with cochlear implants and hearing aids. The subjects of this study were 10 pre-school age children with hearing aids, 12 pre-school age children with cochlear implants, and 10 pre-school age children with normal hearing. Three kinds of signal-to-noise (SNR) conditions (+10 dB, +5 dB, 0 dB) were applied. The results for all pre-school age children with cochlear implants and hearing aids presented a significant increase in the score for sentence recognition as SNR increased. The sentence recognition score in speech noise were obtained with the SNR +10 dB. Significant differences existed between groups in terms of their sentence recognition ability, with the cochlear implant group performing better than the hearing aid group. These findings suggest the presence of a sentence recognition test using speech noise is useful for evaluating pre-school age children's listening skill.

  • PDF

The Pattern Recognition Methods for Emotion Recognition with Speech Signal (음성신호를 이용한 감성인식에서의 패턴인식 방법)

  • Park Chang-Hyun;Sim Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.284-288
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.

The Pattern Recognition Methods for Emotion Recognition with Speech Signal (음성신호를 이용한 감성인식에서의 패턴인식 방법)

  • Park Chang-Hyeon;Sim Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.347-350
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.

  • PDF

A Study on Variation and Determination of Gaussian function Using SNR Criteria Function for Robust Speech Recognition (잡음에 강한 음성 인식에서 SNR 기준 함수를 사용한 가우시안 함수 변형 및 결정에 관한 연구)

  • 전선도;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.112-117
    • /
    • 1999
  • In case of spectral subtraction for noise robust speech recognition system, this method often makes loss of speech signal. In this study, we propose a method that variation and determination of Gaussian function at semi-continuous HMM(Hidden Markov Model) is made on the basis of SNR criteria function, in which SNR means signal to noise ratio between estimation noise and subtracted signal per frame. For proving effectiveness of this method, we show the estimation error to be related with the magnitude of estimated noise through signal waveform. For this reason, Gaussian function is varied and determined by SNR. When we test recognition rate by computer simulation under the noise environment of driving car over the speed of 80㎞/h, the proposed Gaussian decision method by SNR turns out to get more improved recognition rate compared with the frequency subtracted and non-subtracted cases.

  • PDF

Voice Recognition Performance Improvement using the Convergence of Voice signal Feature and Silence Feature Normalization in Cepstrum Feature Distribution (음성 신호 특징과 셉스트럽 특징 분포에서 묵음 특징 정규화를 융합한 음성 인식 성능 향상)

  • Hwang, Jae-Cheon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.13-17
    • /
    • 2017
  • Existing Speech feature extracting method in speech Signal, there are incorrect recognition rates due to incorrect speech which is not clear threshold value. In this article, the modeling method for improving speech recognition performance that combines the feature extraction for speech and silence characteristics normalized to the non-speech. The proposed method is minimized the noise affect, and speech recognition model are convergence of speech signal feature extraction to each speech frame and the silence feature normalization. Also, this method create the original speech signal with energy spectrum similar to entropy, therefore speech noise effects are to receive less of the noise. the performance values are improved in signal to noise ration by the silence feature normalization. We fixed speech and non speech classification standard value in cepstrum For th Performance analysis of the method presented in this paper is showed by comparing the results with CHMM HMM, the recognition rate was improved 2.7%p in the speech dependent and advanced 0.7%p in the speech independent.