• Title/Summary/Keyword: signal recognition

Search Result 1,278, Processing Time 0.028 seconds

RECOGNITION SYSTEM USING VOCAL-CORD SIGNAL (성대 신호를 이용한 인식 시스템)

  • Cho, Kwan-Hyun;Han, Mun-Sung;Park, Jun-Seok;Jeong, Young-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.216-218
    • /
    • 2005
  • This paper present a new approach to a noise robust recognizer for WPS interface. In noisy environments, performance of speech recognition is decreased rapidly. To solve this problem, We propose the recognition system using vocal-cord signal instead of speech. Vocal-cord signal has low quality but it is more robust to environment noise than speech signal. As a result, we obtained 75.21% accuracy using MFCC with CMS and 83.72% accuracy using ZCPA with RASTA.

  • PDF

Emotion Recognition Method Based on Multimodal Sensor Fusion Algorithm

  • Moon, Byung-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Human being recognizes emotion fusing information of the other speech signal, expression, gesture and bio-signal. Computer needs technologies that being recognized as human do using combined information. In this paper, we recognized five emotions (normal, happiness, anger, surprise, sadness) through speech signal and facial image, and we propose to method that fusing into emotion for emotion recognition result is applying to multimodal method. Speech signal and facial image does emotion recognition using Principal Component Analysis (PCA) method. And multimodal is fusing into emotion result applying fuzzy membership function. With our experiments, our average emotion recognition rate was 63% by using speech signals, and was 53.4% by using facial images. That is, we know that speech signal offers a better emotion recognition rate than the facial image. We proposed decision fusion method using S-type membership function to heighten the emotion recognition rate. Result of emotion recognition through proposed method, average recognized rate is 70.4%. We could know that decision fusion method offers a better emotion recognition rate than the facial image or speech signal.

A Research of a Traffic Light Signal Classification Model using YOLOv5 for Autonomous Driving (자율주행을 위한 YOLOv5 기반 신호등의 신호 분류 모델 연구)

  • Joongjin Kook;Hakseung Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.61-64
    • /
    • 2024
  • As research on autonomous driving technology becomes more active, various studies on signal recognition of traffic lights are also being conducted. When recognizing traffic lights with different purposes and shapes, such as pedestrian traffic lights, vehicle-only traffic lights, and right-turn traffic lights, existing classification methods may cause misrecognition problems. Therefore, in this study, we studied a model that allows accurate signal recognition by subdividing the classification of signals according to the purpose and type of traffic lights. A signal recognition model was created by classifying traffic lights according to their shape and purpose into horizontal, vertical, right turn, etc., and by comparing them with the existing signal recognition model based on YOLOv5, it was confirmed that more correct and accurate recognition was possible.

  • PDF

A New Robust Signal Recognition Approach Based on Holder Cloud Features under Varying SNR Environment

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4934-4949
    • /
    • 2015
  • The unstable characteristic values of communication signals along with the varying SNR (Signal Noise Ratio) environment make it difficult to identify the modulations of signals. Most of relevant literature revolves around signal recognition under stable SNR, and not applicable for signal recognition at varying SNR. To solve the problem, this research developed a novel communication signal recognition algorithm based on Holder coefficient and cloud theory. In this algorithm, the two-dimensional (2D) Holder coefficient characteristics of communication signals were firstly calculated, and then according to the distribution characteristics of Holder coefficient under varying SNR environment, the digital characteristics of cloud model such as expectation, entropy, and hyper entropy are calculated to constitute the three-dimensional (3D) digital cloud characteristics of Holder coefficient value, which aims to improve the recognition rate of the communication signals. Compared with traditional algorithms, the developed algorithm can describe the signals' features more accurately under varying SNR environment. The results from the numerical simulation show that the developed 3D feature extraction algorithm based on Holder coefficient cloud features performs better anti-noise ability, and the classifier based on interval gray relation theory can achieve a recognition rate up to 84.0%, even when the SNR varies from -17dB to -12dB.

Robot User Control System using Hand Gesture Recognizer (수신호 인식기를 이용한 로봇 사용자 제어 시스템)

  • Shon, Su-Won;Beh, Joung-Hoon;Yang, Cheol-Jong;Wang, Han;Ko, Han-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • This paper proposes a robot control human interface using Markov model (HMM) based hand signal recognizer. The command receiving humanoid robot sends webcam images to a client computer. The client computer then extracts the intended commanding hum n's hand motion descriptors. Upon the feature acquisition, the hand signal recognizer carries out the recognition procedure. The recognition result is then sent back to the robot for responsive actions. The system performance is evaluated by measuring the recognition of '48 hand signal set' which is created randomly using fundamental hand motion set. For isolated motion recognition, '48 hand signal set' shows 97.07% recognition rate while the 'baseline hand signal set' shows 92.4%. This result validates the proposed hand signal recognizer is indeed highly discernable. For the '48 hand signal set' connected motions, it shows 97.37% recognition rate. The relevant experiments demonstrate that the proposed system is promising for real world human-robot interface application.

Traffic Signal Detection and Recognition Using a Color Segmentation in a HSI Color Model (HSI 색상 모델에서 색상 분할을 이용한 교통 신호등 검출과 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.92-98
    • /
    • 2022
  • This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.

Speech Recognition in Noise Environment by Independent Component Analysis and Spectral Enhancement (독립 성분 분석과 스펙트럼 향상에 의한 잡음 환경에서의 음성인식)

  • Choi Seung-Ho
    • MALSORI
    • /
    • no.48
    • /
    • pp.81-91
    • /
    • 2003
  • In this paper, we propose a speech recognition method based on independent component analysis (ICA) and spectral enhancement techniques. While ICA tris to separate speech signal from noisy speech using multiple channels, some noise remains by its algorithmic limitations. Spectral enhancement techniques can compensate for lack of ICA's signal separation ability. From the speech recognition experiments with instantaneous and convolved mixing environments, we show that the proposed approach gives much improved recognition accuracies than conventional methods.

  • PDF

Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal (초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구)

  • Lee, Gang-Yong;Kim, Jun-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.

A Study on the Application of Digital Signal Processing for Pattern Recognition of Microdefects (미소결함의 형상인식을 위한 디지털 신호처리 적용에 관한 연구)

  • 홍석주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.119-127
    • /
    • 2000
  • In this study the classified researches the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing feature extraction feature selection and classifi-er selection is teated by bulk,. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function the empirical Bayesian classifier. Also the pattern recognition technology is applied to classifica-tion problem of natural flaw(i.e multiple classification problem-crack lack of penetration lack of fusion porosity and slag inclusion the planar and volumetric flaw classification problem), According to this result it is possible to acquire the recognition rate of 83% above even through it is different a little according to domain extracting the feature and the classifier.

  • PDF

A Study on Realization of Speech Recognition System based on VoiceXML for Railroad Reservation Service (철도예약서비스를 위한 VoiceXML 기반의 음성인식 구현에 관한 연구)

  • Kim, Beom-Seung;Kim, Soon-Hyob
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper suggests realization method for real-time speech recognition using VoiceXML in telephony environment based on SIP for Railroad Reservation Service. In this method, voice signal incoming through PSTN or Internet is treated as dialog using VoiceXML and the transferred voice signal is processed by Speech Recognition System, and the output is returned to dialog of VoiceXML which is transferred to users. VASR system is constituted of dialog server which processes dialog, APP server for processing voice signal, and Speech Recognition System to process speech recognition. This realizes transfer method to Speech Recognition System in which voice signal is recorded using Record Tag function of VoiceXML to process voice signal in telephony environment and it is played in real time.