• Title/Summary/Keyword: signal power.

Search Result 5,945, Processing Time 0.035 seconds

Studies on Layered Modulation for SVC Signals in DVB-S2 System

  • Wang, Yi;Kim, Seung-Chul;Lee, Kye-San;Sohn, Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.181-184
    • /
    • 2008
  • The paper describes a Layered Modulation using the SVC signals and studies the properties of the modulation with respect to several parameters by the computer simulation. The SVC signals will include a base layer signal and an enhancement signal, and the base layer signal is the more important one in its channel robustness. The parameters will include a carrier frequency, a bandwidth, power level, modulation type and code rate. We analyze the demodulating and decoding process of the Layered Modulation system through several scatter plots. And then we discuss the affect of the layer signal power difference to the BER performance, which also proves the base layer signal is more important than the enhancement layer signal.

  • PDF

Performance Analysis of Adaptive Array Antenna for GPS Anti-Jamming (GPS 항재밍을 위한 적응 배열 안테나의 성능 분석)

  • Jeong, Taehee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.382-389
    • /
    • 2013
  • In anti-jamming GPS receiver, adaptive signal processing techniques in which the radiation pattern of adaptive array antenna of elements may be adaptively changed used to reject interference, clutter, and jamming signals. In this paper, I describes adaptive signal processing technique using the sample matrix inversion(SMI) algorithm. This adaptive signal processing technique can be applied effectively to wideband/narrowband anti-jamming GPS receiver because it does not consider the satellite signal directions and GPS signal power level exists below the thermal noise. I also analyzed the effects of covariance matrix sample size and diagonal loading technique on the system performance of five-element circular array antenna. To attain near optimum performance, more samples required for calculation covariance matrix. Diagonal loading technique reduces the system nulling capability against low-power jamming signals, but this technique improves robustness of adaptive array antenna.

A Wireless Identification System Using a Solar Cell and RF Transceivers (솔라셀과 RF송수신기를 이용한 무선인식장치)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.337-343
    • /
    • 2016
  • In this paper, we newly introduce a wireless identification system using a solar cell and RF transceivers. The reader sends interrogating signal to a transponder using LED visible light, and the transponder responds to the reader using RF signal. The transponder consists of a solar cell, an amplifier, a microprocessor, and an RF transmitter. The solar cell receives the visible light from the reader and generates current to supply electric power to the other devices in the transponder. At the same time, the solar cell detects interrogating signal in the reader light. The microprocessor senses the interrogating signal and generates a responding signal. The RF transmitter radiates the responding signal to the reader. The transponder is a passive circuit because it operates without external power. In experiments, the maximum read distance between a reader and a transponder was about 1.6 meter.

Functional Relation Between Signal Distortion and a Figure of Merit for Nonlinear Process in Dispersion-managed Optical Transmission

  • Kim, Sungman
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2012
  • We show that the minimum EOP (eye-opening penalty) obtained by tunable dispersion compensation is a function of a figure of merit for a nonlinear process, $I_0L_{eff}$, where $I_0$ is the optical intensity and $L_{eff}$ is the effective length of the interaction region. Using this rule, we do not need to conduct nonlinear simulations in all the cases of signal power and transmission length to obtain the signal distortion in dispersion-managed optical transmission. Instead, we need to conduct a simulation in only one case of a signal power and find the functional relation, and then we can obtain the values of the signal distortion in other cases using the discovered functional relation. This technique can reduce the number of nonlinear simulations to less than 10%.

Modeling and Small-Signal Analysis of Controlled On-time Boost Power Factor Correction Circuit (도통 시간 제어형 승압형 역률보상회로의 모델링과 소신호 해석)

  • Park, Hyo-Gil;Hong, Seong-Su;Choe, Byeong-Jo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.364-370
    • /
    • 2000
  • A large-signal average model for the controlled on-time boost power factor correction(PFC) circuit is developed and subsequently linearized resulting in a small-signal model for the PFC circuit. Ac analyses are performed using the small-signal model, revealing new results new on small-signal dynamics of the PFC circuit. The analysis results and model predictions are confirmed with experimental measurements on 200W prototype PFC circuit.

  • PDF

Suppression Method for Torque Ripple of PM Synchronous Motor

  • Yonezawa Hiroyuki;Taniguchi Katsunori;Lee Hyun Woo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.264-271
    • /
    • 2005
  • A new modified trapezoidal modulating signal for a pulse width modulation (PWM) inverter suitable for a permanent magnet synchronous motor (PMSM) drive is proposed in this paper. A new modulating signal for the PMSM drive is determined by the characteristic torque ripple of the motor with various electro-motive force (EMF). The proposed modulating signal is able to decrease the torque ripple even if the motor has sinusoidal EMF or non-sinusoidal EMF. By using the proposed modulating signal, the system reduced the torque ripple as well as achieved the effective utilization of the DC supply voltage for the inverter. Many improvements are accomplished by the PWM strategy adapting the modified trapezoidal modulating signal without a change in hardware.

A Study on Respiration Measurement Using a Smartphone (스마트폰을 이용한 호흡 측정에 관한 연구)

  • Kang, Sung Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.108-112
    • /
    • 2018
  • In this paper, a respiration measurement method using FMCW signal for off-the-shelf smartphone is presented and investigated. The proposed algorithm transmits FMCW signal periodically instead of transmitting continuously so that one can reduce the power consumption from speaker in smartphone and the algorithm complexity. In order to eliminate the clicking noise generated when transmitting FMCW signal, Tukey window with ${\alpha}=0.01$ is applied to prevent the noise from being heard. An application program for Android OS which can transmit FMCW signal through speaker and record the reflected signals through MIC has been developed. Since the total duration of the signal transmission is set to 20msec per 1 second for the experiments, the power consumption can be decreased by 80% compared to the continuous transmission. It was confirmed that the clicking noise is inaudible as long as a smartphone is located at more than 10cm from ears. In the experiments on a sleeping child, the breathing signal of about 0.27Hz was measured.

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

Design of Deep De-nosing Network for Power Line Artifact in Electrocardiogram (심전도 신호의 전력선 잡음 제거를 위한 Deep De-noising Network 설계)

  • Kwon, Oyun;Lee, JeeEun;Kwon, Jun Hwan;Lim, Seong Jun;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.402-411
    • /
    • 2020
  • Power line noise in electrocardiogram signals makes it difficult to diagnose cardiovascular disease. ECG signals without power line noise are needed to increase the accuracy of diagnosis. In this paper, it is proposed DNN(Deep Neural Network) model to remove the power line noise in ECG. The proposed model is learned with noisy ECG, and clean ECG. Performance of the proposed model were performed in various environments(varying amplitude, frequency change, real-time amplitude change). The evaluation used signal-to-noise ratio and root mean square error (RMSE). The difference in evaluation metrics between the noisy ECG signals and the de-noising ECG signals can demonstrate effectiveness as the de-noising model. The proposed DNN model learning result was a decrease in RMSE 0.0224dB and a increase in signal-to-noise ratio 1.048dB. The results performed in various environments showed a decrease in RMSE 1.7672dB and a increase in signal-to-noise ratio 15.1879dB in amplitude changes, a decrease in RMSE 0.0823dB and a increase in signal-to-noise ratio 4.9287dB in frequency changes. Finally, in real-time amplitude changes, RMSE was decreased 0.3886dB and signal-to-noise ratio was increased 11.4536dB. Thus, it was shown that the proposed DNN model can de-noise power line noise in ECG.

Robust Signal Transition Density Estimation by Considering Reconvergent Path (재수렴성 경로를 고려한 견실한 신호 전이 밀도 예측)

  • Kim, Dong-Ho;U, Jong-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A robust signal transition density propagation method for a zero delay model is presented to obtain the signal transition density for estimating the power consumption. The power estimation for the zero delay model is a proper criteria for the lower boundary of power consumption. Since the input characteristics are generally unknown at design stage, robust estimation for wide range input characteristics is very important for the power consumption. In this paper, a conventional transition estimation method will be explored. And this exploration will be analyzed with the input/output signal transition behavior and used to propose the robust signal transition density propagation for the power estimation. In order to apply to practical circuits, the reconvergent path, which is crucial to affect the exactness of the power estimation, will be studied and an algorithm to take the reconvergent path into consideration will be presented. In experiment, the proposed methodology shows better robustness, comparable accuracy and elapsed time compared to the conventional methods.