• Title/Summary/Keyword: signal modelling

Search Result 126, Processing Time 0.029 seconds

Estimation of bearing error of line array sonar system caused by bottom bounced path (해저면 반사신호의 선 배열 소나 방위 오차 해석)

  • Oh, Raegeun;Gu, Bon-Sung;Kim, Sunhyo;Song, Taek-Lyul;Choi, Jee Woong;Son, Su-Uk;Kim, Won-Ki;Bae, Ho Seuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.412-421
    • /
    • 2018
  • The Line array sonar consisting of several hydrophones increases array gain and improves the performance for detecting the direction of the target compared to single hydrophone. However, line array sonar produces the bearing error that makes it difficult to determine the bearing of incoming source signal due to the relation between bearing angle of target and vertical angle of multipath signals. Vertical angles of multipath are varied with the geometry of receiver and target and various underwater environments, therefore it is necessary to consider the bearing error to estimate accurately the bearing of the target. In this study, acoustic modelling was performed to understand the effect of multipath signals on the target signal. The errors of bearing angle estimated from the bottom bounced signals are calculated with several environment. In addition, the expected bearing line, as a function of source-receiver range, compensated for the bearing error is predicted from the estimated bearing angle.

A Study on a Mask R-CNN-Based Diagnostic System Measuring DDH Angles on Ultrasound Scans (다중 트레이닝 기법을 이용한 MASK R-CNN의 초음파 DDH 각도 측정 진단 시스템 연구)

  • Hwang, Seok-Min;Lee, Si-Wook;Lee, Jong-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.183-194
    • /
    • 2020
  • Recently, the number of hip dysplasia (DDH) that occurs during infant and child growth has been increasing. DDH should be detected and treated as early as possible because it hinders infant growth and causes many other side effects In this study, two modelling techniques were used for multiple training techniques. Based on the results after the first transformation, the training was designed to be possible even with a small amount of data. The vertical flip, rotation, width and height shift functions were used to improve the efficiency of the model. Adam optimization was applied for parameter learning with the learning parameter initially set at 2.0 x 10e-4. Training was stopped when the validation loss was at the minimum. respectively A novel image overlay system using 3D laser scanner and a non-rigid registration method is implemented and its accuracy is evaluated. By using the proposed system, we successfully related the preoperative images with an open organ in the operating room

A fast reconstruction technique for nonlinear ocean wave simulation (비선형 해양파 수치 모사를 위한 고속 재현 기법)

  • Lee, Sang-Beom;Choi, Young-Myung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • An improvement of computational resources with a large scale cluster service is available to the individual person, which has been limited to the original industry and research institute. Therefore, the application of powerful computational resources to the engineering design has been increased fast. In naval and marine industry, the application of Computational Fluid Dynamics, which requires a huge computational effort, to a design of ship and offshore structure has been increased. Floating bodies such as the ship or offshore structure is exposed to ocean waves, current and wind in the ocean, therefore the precise modelling of those environmental disturbances is important in Computational Fluid Dynamics. Especially, ocean waves has to be nonlinear rather than the linear model based on the superposition due to a nonlinear characteristics of Computational Fluid Dynamics. In the present study, a fast reconstruction technique is suggested and it is validated from a series of simulations by using the Computational Fluid Dynamics.

Refinement of Interpretation Method for Reliable Vs Profiling in Downhole Seismic Method (다운홀 시험에서 신뢰성 있는 전단파 속도 주상도 도출을 위한 해석 기법의 개선)

  • Bang, Eun-Seok;Kim, Dong-Soo;Yoon, Jong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.157-170
    • /
    • 2006
  • Downhole method is considered as giving a little unreliable Vs profile when the signal to noise ratio(S/N) is low and the travel time information is erroneous although it is economical and ease of operation. Direct method has been applied for obtaining adequate result in this case. But it is difficult to determine optimum result by using direct method which is subjective and considering straight ray path. Therefore, in this paper, Mean Refracted Ray Path Method(MRM) was proposed, which is automated and considering refracted ray path. Artificial travel time data adding some travel time error was generated by forward modeling based on Snell's Law and travel time data was also obtained from numerical signal traces using FEM modelling. Using these travel time data, reliability of MRM was verified in the manner of comparing the results determined by MRM with the model. Finally, proposed method was applied to the real field data and it was considered as improved method for obtaining the optimum result in downhole seismic method.

Detection of Levitated Ring using Photo Sensor and Construct of an Education System (광센서를 이용한 점핑링의 위치검출과 교육용 시스템 제작)

  • Park, Seong-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.365-370
    • /
    • 2002
  • The jumping ring apparatus described in this study is used to demonstrate and educate the effects of electromagnetic induction. Placing an aluminum ring over the core and switching on AC source causes the ring to jump in the air due to induced currents in the ring producing a magnetic field opposed to that produced in the core. This force is a function of flux density, ac current of ring and levitated height of the ring. Using photo sensor arrays, detect the ring position and represent the position of the ring to analog voltage for an education performance. This paper presents modelling of the jumping ring system and shows how does control signal generate in order to follow desired position.

Spacecraft Attitude Determination Study using Predictive Filter (Predictive Filter를 이용한 인공위성 자세결정 연구)

  • Choi , Yoon-Hyuk;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.48-56
    • /
    • 2005
  • Predictive filter theory proposed recently can be characterized by inherent advantages of estimating modelling error and overcoming the disadvantage of the Kalman filter theory. A one-step ahead error is minimized to produce optimized filter performance in the form of the predictive filter. The main advantage of this filter lies in the ability to estimate both state vector and system model error. In this paper, attitude estimation results based upon the predictive filter theory is addressed. Mathematical formulation for estimating bias signal is peformed by using the predictive filter theory, and attitude estimation based upon vector observation is presented. From the results of this study, the potential applicability of the predictive filter is highlighted.

A Design of Acoustic-based Underwater Image Transmission System Based on the Multipath Analysis. (Multipath를 고려한 수중영상 전송 시스템 설계)

  • 임용곤;박종원;최영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.202-211
    • /
    • 2001
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. Underwater acoustic channel with multipath structure is introduced to mathematical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of multipath's effect is presented as a mathematical equation, and the equation of SMR is simulated by MATLAB program. Furthermore, this paper is also dealt with an implementation of modulation and demodulation system for acoustic transmission. Acoustic Transmission is limited by frequency bandwidth, so $\pi/4 QPSK$(Quadrature Phase Shift Keying) methods which is very useful at frequency ]imitation and FM(Frequency Modulation) are used at acoustic communication system. This implemented hybrid modulation/demodulation system is used as an analog board of image transmission system. In this system, adaptive equalization for reducing the multipath effect and baseline JPEG used for an image compressing are also stated.

  • PDF

A Design of Acoustic-based Underwater Image Transmission System Based on the Multipath Analysis. (Multipath를 고려한 수중영상 전송 시스템 설계)

  • 임용곤;박종원;최영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.419-425
    • /
    • 2000
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. Underwater acoustic channel with multipath structure is introduced to mathematical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of multipath's effect is presented as a mathematical equation, and the equation of SMR is simulated by MATLAB program. Furthermore, this paper is also dealt with an implementation of modulation and demodulation system for acoustic transmission Acoustic Transmission is limited by frequency bandwidth so $\pi$/4 Quadrature Phase Shift Keying) methods which is very useful at frequency limitation and FM(Frequency Modulation) are used at acoustic communication system. This implemented hybrid modulation/demodulation system is used as an analog board of image transmission system

  • PDF

A study on the design of a K-band harmonic oscillator using voltage controlled dielectric resonance (전압제어 유전체공진을 이용한 K-대역 발진기 설계에 관한 연구)

  • 전순익;김성철;은도현;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3215-3226
    • /
    • 1996
  • In this paper a K-band harmonic oscillator competitive to ordinary Push-Push type oscillators is introduced. This oscillator is composed of two-X-band dielectric resonance circuits. To favor its harmonic generation, the load effect and the bias effect are studied to allow the maximum harmonic distortion. As results, the dielectric resonated load and the class A bias are used for the 2nd harmonic generation. analytical study for modelling of voltage controlled dielectric resonator is carried out with theoretical background. The performance of the circuit is evaluated by simulation using harmonic balanced method. The novel structure has ont only a voltage tuning circuit but also an output port at fundamental frequency as the function of prescaler for phase lockede loop application on the just single oscillation structure. In experimentation, the output freqneyc of the 2nd harmonic signal is 20.5GHz and the maximum power level of output is +5.5dBm without additional post amplifiers. the harmonic oscillator exhibits -30dBc of high fundamental frequency rejection without added extra filters. The phase noise of -90dBc/Hz at 100kHz off-carrier has been achieved under free running condition, that satisfies phase noise requirement of IESS 308. The proposed oscillator may be utilized as the clean and stable fixed local oscillator in Transmit Block Upconvertor(TBU) or Low oise Block downconvertor(LNB) for K/Ka-band digital communications and satellite broadcastings.

  • PDF

Floating-Poing Quantization Error Analysis in Subband Codes System

  • Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.41-48
    • /
    • 1997
  • The very purpose of subband codec is the attainment of data rate compression through the use of quantizer and optimum bit allocation for each decimated signal. Yet the question of floating-point quantization effects in subband codec has received scant attention. There has been no direct focus on the analysis of quantization errors, nor on design with quantization errors embedded explicitly in the criterion. This paper provides a rigorous theory for the modelling, analysis and optimum design of the general M-band subband codec in the presence of the floating-point quantization noise. The floating-point quantizers are embedded into the codec structure by its equivalent multiplicative noise model. We then decompose the analysis and synthesis subband filter banks of the codec into the polyphase form and construct an equivalent time-invariant structure to compute exact expression for the mean square quantization error in the reconstructed an equivalent time-invariant structure to compute exact expression for the mean square quantization error in the reconstructed output. The optimum design criteria of the subband codec is given to the design of the analysis/synthesis filter bank and the floating-point quantizer to minimize the output mean square error. Specific optimum design examples are developed with two types of filter of filter banks-orthonormal and biorthogonal filter bank, along with their perpormance analysis.

  • PDF