• 제목/요약/키워드: signal intelligence

검색결과 237건 처리시간 0.022초

무선 센서 네트워크에서 C-SCGP를 이용한 RSS/AOA 이상치 제거 기반 표적 위치추정 기법 (Outlier Reduction using C-SCGP for Target Localization based on RSS/AOA in Wireless Sensor Networks)

  • 강세영;이재훈;송종인;정원주
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.31-37
    • /
    • 2021
  • 본 논문에서는 무선 센서 네트워크에서 이상치를 포함한 수신 신호 강도와 신호의 도달 각도 측정치 기반의 표적위치추정 성능 저하를 방지하기 위한 이상치 검출 알고리즘 C-SCGP를 제안한다. 센서 오작동, 재밍, 심한 잡음과 같은 다양한 이상치 원인으로 인해 표적 위치추정 정확도가 크게 떨어질 수 있어, 모든 이상치를 탐지하고 제거하는 것이 중요하다. 이러한 이상치를 제거하기 위해 single cluster graph partitioning (SCGP) 알고리즘이 널리 사용되고 있다. 기존의 SCGP 알고리즘은 hyperparameter 최적화를 통한 threshold 설정과 이상치 확률 계산이 필수적이므로 다양한 분야에 효율적인 적용이 제한되어왔다. 본 논문에서 제안된 continuous-SCGP (C-SCGP) 알고리즘은 이러한 SCGP의 약점을 극복한다. 다양한 잡음 환경에서 threshold 설정과 이상치 확률 계산이 필요 없는 제안된 C-SCGP 알고리즘과 threshold 설정과 이상치 확률 계산을 요구하는 SCGP 알고리즘의 이상치 제거 성능이 같음을 최종 추정된 표적의 RMSE 성능을 통하여 검증하였다.

암호화와 DnCNN을 활용한 문서 복원능력 향상에 관한 연구 (An Enhancement Method of Document Restoration Capability using Encryption and DnCNN)

  • 장현희;하성재;조기환
    • 사물인터넷융복합논문지
    • /
    • 제8권2호
    • /
    • pp.79-84
    • /
    • 2022
  • 본 논문은 문서의 보안과 손실 및 오염에 대하여 복원능력을 향상시키는 방안을 제안한다. 이를 위해서 암호화로 DnCNN(DeNoise Convolution Neural Network)을 제시한다. 암호화 방법을 구현하기 위하여 2D이미지정보를 광학에 사용되는 공간주파수 전달함수(Spatial Frequency Transfer Function)의 수학적 모델을 적용한다. 공간 주파수 전달함수를 사용하여 광학적 간섭 패턴을 암호화로 사용하고 공간 주파수 전달함수의 수학적 변수를 복호화하는 암호로 사용하는 방법을 제안하였다. 또한, 딥러닝을 적용한 DnCNN 방법을 적용하여 노이즈 제거하여 복원 성능을 개선한다. 실험결과, 65%의 정보 손실이 있는 경우에도 Pre-Training DnCNN Deep Learning을 적용한 결과 공간 주파수 전달함수만을 활용한 복원 결과 와 비교하여 PSNR(Peak Signal-to-noise ratio)을 11% 이상 우수한 성능을 확인할 수 있다. 또한, CC(Correlation Coefficient)의 특성도 16% 이상 우수한 결과를 보이고 있다.

뉴로모픽 구조 기반 IoT 통합 개발환경에서 SNN 모델을 지원하기 위한 인코더/디코더 구현 (Implementation of Encoder/Decoder to Support SNN Model in an IoT Integrated Development Environment based on Neuromorphic Architecture)

  • 김회남;윤영선
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.47-57
    • /
    • 2021
  • 뉴로모픽 기술은 인간의 뇌 구조와 연산과정을 하드웨어로 모방하는 기술로 기존 인공지능 기술의 단점을 보완하기 위하여 제안되었다. 뉴로모픽 하드웨어 기반의 IoT 응용을 개발하기 위해 NA-IDE가 제안되었으며, NA-IDE에서 SNN 모델을 구현하기 위하여 일반적으로 많이 사용되는 입력 데이터를 SNN모델에 사용할 수 있도록 변환이 필요하다. 본 논문에서는 이미지 데이터를 SNN 입력으로 사용하기 위하여 스파이크 시계열 패턴으로 변환하는 신경코딩 방식의 인코더 컴포넌트를 구현하였다. 디코더 컴포넌트는 SNN 모델이 스파이크 시계열 패턴을 생성하는 경우, 출력된 시계열 데이터를 다시 이미지 데이터로 변환하도록 구현하였다. 디코더 컴포넌트는 출력 데이터에 인코딩 과정과 동일한 매개변수를 사용한 경우, 원본 데이터와 유사한 정적 데이터를 얻을 수 있었다. 제안된 인코더와 디코더를 사용한다면 image-to-image나 speech-to-speech와 같이 입력 데이터를 변환하여 재생성하는 분야에 사용할 수 있을 것이다.

차세대 디지털 병리를 위한 Label Free 디지털염색 알고리즘 비교 연구 (The Novel Label Free Staining Algorithm in Digital Pathology)

  • 황석민;정연우;김동범;이승아;조남훈;이종하
    • 융합신호처리학회논문지
    • /
    • 제24권1호
    • /
    • pp.76-81
    • /
    • 2023
  • 암세포와 정상세포를 구분하기 위해서는 H&E(Hematoxylin&Eosin) 염색이 필요하다. 병리 염색은 많은 비용과 시간이 필요하다. 최근 이러한 비용과 시간을 줄이고자 디지털 염색 방법이 소개되고 있다. 본 연구에서는 병리 H&E 염색의 디지털 변환 방법에 대한 새로운 알고리즘을 제안한다. 첫 번째 알고리즘은 Pair방법이다. 본 방법은 FPM(Fourier Ptychographic Microscopy)으로 촬영된 염색된 Phase 영상과 염색되지 않은 Amplitude 영상을 학습하여 염색된 Amplitude 영상으로 변환한다. 두 번째 알고리즘은 Unpair방법이다. 본 방법은 염색된 형광현미경 영상과 염색되지 않은 형광현미경 영상을 학습하여 모델링하여 디지털 염색을 수행한다. 본 연구에서는 GAN(generative Adversarial Network)를 활용하여 디지털 염색을 진행하였다. 연구 결과 Pair방법과 Unpair방법 모두 우수한 성능의 디지털 염색 결과를 확보하였다.

잡음이 포함된 측정 자료에 대한 신경망의 DNA 용액 조성비 예측 (Prediction of Composition Ratio of DNA Solution from Measurement Data with White Noise Using Neural Network)

  • 강경희;김민지;이효민
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.118-124
    • /
    • 2024
  • 신경망은 심전도 신호, 망막 영상, 지진파 등 잡음이 포함된 자료의 전처리 작업에 활용되고 있다. 그러나, 잡음의 전처리는 전산시간 증가, 원본 신호의 왜곡등의 문제점을 내포하고 있다. 본 연구에서는 잡음의 전처리 없이 측정 자료를 분석할 수 있는 신경망 구조를 연구하였다. 신경망의 학습 자료로써 잡음이 포함된 DNA 용액의 동역학적 거동을 선정하여, 해당 자료로부터 DNA 용액의 조성비를 예측하고자 하였다. DNA의 동역학 자료에 인위적으로 백색 잡음을 추가하여, 신경망의 예측에 대한 잡음의 영향을 알아보았다. 결과적으로, 잡음의 전처리 없이 O(1)의 신호 대 잡음비 자료로부터 O(0.01)의 오차로 용액의 조성비를 예측할 수 있었다. 이러한 연구 결과는 측정 잡음에 민감하게 영향 받을 수 있는 극미량의 유전병 또는 암세포와 관련된 DNA를 분석을 위한 핵심 인공지능 기술로 활용할 수 있다.

설명가능한 의사결정을 위한 마이닝 기술 (Research on Mining Technology for Explainable Decision Making)

  • 정경용
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.186-191
    • /
    • 2023
  • 데이터 처리 기술은 의사결정을 위해 중요한 역할을 하며, 데이터 결측값 및 이상값 처리, 예측, 추천 모델 등이 포함 된다. 이는 모든 과정과 결과의 타당성, 신뢰성, 정확성에 대한 명확한 설명이 필요하다. 또한 의사결정트리, 추론 등을 이용한 설명가능한 모델을 통해 데이터의 문제를 해결하고, 다양한 유형의 학습을 고려하여 모델 경량화를 진행할 필요가 있다. 육하원칙을 적용한 다중 계층 마이닝 분류 방법은 데이터 전처리 후 트랜잭션에서 빈번하게 발생하는 변수와 속성 간의 다차원 관계를 발견하는 방법이다. 이는 트랜잭션에서 마이닝을 이용하여 유의미한 관계를 발견하고, 회귀분석을 통해 데이터를 모델링 하는 방법을 설명한다. 이에따라 확장 가능한 모델과 로지스틱 회귀모델을 개발하고, 데이터 정제, 관련성 분석, 데이터 변환, 데이터 증강을 통해 클래스 레이블을 생성하여 설명가능한 의사결정을 위한 미이닝 기술을 제안한다.

Seamless Routing and Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application

  • Lee, Chang-Eun;Im, Hyun-Ja;Lim, Jeong-Min;Cho, Young-Jo;Sung, Tae-Kyung
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.262-272
    • /
    • 2015
  • In particular, for a practical mobile robot team to perform such a task as that of carrying out a search and rescue mission in a disaster area, the network connectivity and localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a Global Positioning System is unavailable. This paper proposes the new collective intelligence network management architecture of multiple mobile robots supporting seamless network connectivity and cooperative localization. The proposed architecture includes a resource manager that makes the robots move around and not disconnect from the network link by considering the strength of the network signal and link quality. The location manager in the architecture supports localizing robots seamlessly by finding the relative locations of the robots as they move from a global outdoor environment to a local indoor position. The proposed schemes assuring network connectivity and localization were validated through numerical simulations and applied to a search and rescue robot team.

Estimation of Brain Connectivity during Motor Imagery Tasks using Noise-Assisted Multivariate Empirical Mode Decomposition

  • Lee, Ki-Baek;Kim, Ko Keun;Song, Jaeseung;Ryu, Jiwoo;Kim, Youngjoo;Park, Cheolsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1812-1824
    • /
    • 2016
  • The neural dynamics underlying the causal network during motor planning or imagery in the human brain are not well understood. The lack of signal processing tools suitable for the analysis of nonlinear and nonstationary electroencephalographic (EEG) hinders such analyses. In this study, noise-assisted multivariate empirical mode decomposition (NA-MEMD) is used to estimate the causal inference in the frequency domain, i.e., partial directed coherence (PDC). Natural and intrinsic oscillations corresponding to the motor imagery tasks can be extracted due to the data-driven approach of NA-MEMD, which does not employ predefined basis functions. Simulations based on synthetic data with a time delay between two signals demonstrated that NA-MEMD was the optimal method for estimating the delay between two signals. Furthermore, classification analysis of the motor imagery responses of 29 subjects revealed that NA-MEMD is a prerequisite process for estimating the causal network across multichannel EEG data during mental tasks.

A Study of Power Line Communication-based Smart Outlet System Expandable at Home

  • Huh, Jun-Ho;Kim, Namjug;Seo, Kyungryong
    • 한국멀티미디어학회논문지
    • /
    • 제19권5호
    • /
    • pp.901-909
    • /
    • 2016
  • Unprecedented attention is being given to Smart Grid, Micro Grid and Internet of Things (IoT) in the Republic of Korea recently but such systems' effect is not well experienced by the market since they require additional and costly reforms for the existing household electrical system where adaptive communication platforms are needed. As such platforms, both wireless and wire communication technologies are being considered at the moment. Usually, they include WiFi, Zigbee technologies and the latter, LAN technology. However, communication speed decline due to signal attenuation and interference during wireless communications are considered to be the major problem and the extra works involving time and costs for the LAN system construction can be another demerit. Therefore, in this paper, we have introduced a Power Line Communication-based Smart Outlet System Expandable at Home to complement these disadvantages. Proposed IoT system involves Power Line Communication (PLC) technology which is essential to constructing a Smart Grid.

지능형 교통 시스템의 해외 사례 연구 (A Case Study on Foreign Intelligent Transport System)

  • 이동우
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.259-264
    • /
    • 2014
  • 디지털 컨버전스는 정보통신 영역에서의 단위 기술들의 융합을 통하여 나타나는 새로운 상품이라 할 수 있다. 이러한 컨버전스 시대상황에 맞추어 정부에서는 10개 산업 군을 포함하는 "2025년 ICT 수요조사"를 실시하였다. 본 연구에서는 스마트 시티의 하나의 구성요소인 스마트 모빌리티에 대해 기술하였다. 이러한 스마트 모빌리티의 중심 역할을 수행하는 지능형 교통 시스템은 도로, 차량, 신호시스템 등 기존 교통시스템의 구성요소에 전자, 제어, 통신 등의 첨단기술을 접목시켜 교통시설의 효율을 높이고 안전을 증진하기 위한 교통시스템을 말한다. 본 연구에서는 우리의 일상적인 생활 공간속에서 접하고 있는 지능형 교통시스템에 대한 해외 각국의 사례들에 대해 기술하였다.