• Title/Summary/Keyword: signal head

Search Result 414, Processing Time 0.034 seconds

Keyboard for Virtual Reality Head Mounted Display using Electro-oculogram (EOG를 사용한 가상현실 HMD용 키보드 구현)

  • Kim, Byeong-Jun;Kwon, Ki-Chul;Yang, Young-Man;Kim, Nam
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • A keyboard system for hands-free virtual reality head mounted display using electrooculogram (EOG) signal which occurs during the eye-blinking is proposed. This system consists of display device, gyroscope sensor, gravity sensor and electro-encephalogram (EEG) sensor, and it is implemented with Unity3D engine for system control and graphic processing. If the input language of proposed keyboard system is Korean, i.e. Hangul, the Chonjiin keyboard method is utilized; but for the English spelling, numbers or special characters, $3{\times}4$ keyboard method is used in order to solve the spatial problem. By the implemented method, it can be verified that the user can handle the keyboard input of virtual reality head mounted display with only neck movement and EOG, instead of using hands.

Interpretation of Ground Wave Using Ray Method in Pekeris Waveguide (Pekeris 도파관에서 음선 접근법을 이용한 지면파 해석)

  • Choi, Jee-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • Ground wave is an acoustic wave propagating at a sediment sound speed in the case that sediment sound speed is constant with depth, which is explained by modal dispersion effects. In this paper, the ground wave in time domain is simulated using the ray-based approach, which is possible because the modal dispersion can be explained by the guiding of energy caused by reflection and refraction in the waveguide geometry. For a Pekeris waveguide, the ground wave can be interpreted as a sequence of head waves, called a head wave sequence [Choi and Dahl, J. Acoust. Soc. Am. 119, 3660-3668 (2006)]. The ground wave is simulated by convolution of the source signal with a channel impulse response of the head wave sequence, which is compared with simulated signals obtained via a Fourier synthesis of a complex parabolic equation (PE) field.

Defect evaluations of weld zone in rails considering phase space-frequency demain (위상공간-주파수 영역을 고려한 레일 용접부의 결함 평가)

  • 윤인식;권성태;장영권;정우현;이찬석
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.21-30
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the phase space-frequency domain. Features extracted from time series signal analyze quantitatively characteristics of weld defects. For this purpose, analysis objectives in this study are features of time domain and frequency domain. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as parts of head and flange even though the types of defects are identified. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 3.848 in the case of part of head(crack) and 4.102 in the case of part of web(side hole) and 3.711 in the case of part of flange(crack) were proposed on the basis of fractal dimension. Proposed phase space-frequency domain method in this study can integrity evaluation for defect signals of rail weld zone such as side hole and crack.

  • PDF

Case Study on the Load-Deflection and Acoustic Emission Analysis of SM45C Coupons with a Circular Hole Defect under Tensile Loading (원공결함을 갖는 SM45C 인장시험편의 강도해석과 음향방출에 관한 사례연구)

  • Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.50-58
    • /
    • 2008
  • The SM45C metallic coupons have been tested under static tensile loading with acoustic emission (AE) as the load-deflection curve mainly. In this study, we used AE to detect the yielding of material and AE techniques was applied to rapidly estimate the mechanical characteristics of a material. First, coupons without an artificial defect were tested at different cross-head speed. For all cases in this analysis, yielding point of SM45C coupons did not appear definitely compared to mild steel, whereas coupons start to generate AE counts upon yielding. So all cases are normalized to know the possibility of accelerated life test of a material. And next, coupons with different from sizes of circular hole defects were tested at the same cross-head speed of 5 mm/min. Results were classified into 3 classes and analyzed by AE amplitude & signal strength as a function of time. Summarizing the specific conclusions, we need to additional research considering plate with width-ratio in order to estimate the fracture mechanism.

HRTF Measurement and Its Application for 3-D Soung Localization

  • Kang, Kyeong Ok;Kang, Dong-Gyu;Hahn, Minsoo;Jho, Moon Jae;Jeong, Dae-Gwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.50-55
    • /
    • 1997
  • Based on the anthropometric data of Korea male adults, a head and torso simulator(HATS) is constructed to measure its head related transfer functions (HRTFs) which can be used for three dimensional (3-D) sound localization. The HRTFs binaural impulse responses, are measured in an anechoic chamber using a burst maximum length sequence (MLS) signal of 65,535 samples and 32,768 samples acquisition at the sampling rate of 75.47kHz. Also measured are the impulse responses of a driving loudspeaker and some headphones for sound reproduction to get the exact HRTF of the HATS-alone. Through a post-processing procedure, the impulse-version HRTFs at the sampling frequency of 44.1 kHz, which have filter lengths of 512 points, are finally obtained. As an application of the measured HRTFs, a 3-D sound processor for headphone reproduction has been developed. The signal intervals to be processed can be selected and each interval is manipulated to have its diretionality and distance information by using corresponding HRTF and energy control.

  • PDF

Geometric moire fringe fiber optic accelerometer system for monitoring civil infrastructures (토목 구조물 건전성 평가를 위한 무아레 프린지 기법 광섬유 가속도계 시스템 개발)

  • Kim, Dae-Hyun;Feng, Maria Q.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents a novel fiber optic accelerometer system for monitoring vibration of large-size structures. The system is composed of one (or multiple) sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy cabling, and low cost. In this paper, a prototype of the fiber optic accelerometer system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. A unique algorithm has also been developed to derive the sensor's acceleration from the raw signals of the light control unit; it is implemented via a separate signal processing unit. Finally, the shaking table tests successfully demonstrate the performance and the potential of the moire fringe fiber optic sensor system to monitor the health of civil infrastructures.

A Cluster-based Routing Protocol with Energy Consumption Balance in Distributed Wireless Sensor Networks (분산 무선센서 네트워크의 클러스터-기반 에너지 소비 균형 라우팅 프로토콜)

  • Kim, Tae-Hyo;Ju, Yeon-Jeong;Oh, Ho-Suck;Kim, Min-Kyu;Jung, Yong-Bae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • In this paper, a cluster-based routing protocol in distributed sensor network is proposed, which enable the balanced energy consumption in the sensor nodes densely deployed in the sensor fields. This routing protocol is implemented based on clusters with hierarchical scheme. The clusters are formed by the closely located sensor nodes. A cluster node with maximum residual energy in the cluster, can be selected as cluster head node. In routing, one of the nodes in the intersection area between two clusters is selected as a relay-node and this method can extend the lifetime of all the sensor nodes in view of the balanced consumption of communication energy.

Study of Frequency Response Characteristics in Microphone Used by Optical Sensor

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in microphone using optical sensor, acousto-optic sensor system has been implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point has also been determined by measuring the response characteristics. The choosing the point, which has maximum linearity and sensitivity has changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement /analysis program, "Smaart Live" and "USBPre", which are based on PC, and compared the result from an existing capacitance microphone. The measured optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 4 kHz at up to 3 dB.

Signal Analysis of Motor Current for End Point Detection in the Chemical Mechanical Polishing of Shallow Trench Isolation with Reverse Moat Structure

  • Park, Chang-Jun;Kim, Sang-Yong;Seo, Yong-Jin
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.262-267
    • /
    • 2002
  • In this paper, we first studied the factors affecting the motor current (MC) signal, which was strongly affected by the systematic hardware noises depending on polishing such as pad conditioning and arm oscillation of platen and recipe, head motor. Next, we studied the end point detection (EPD) for the chemical mechanical polishing (CMP) process of shallow trench isolation (STI) with reverse moat structure. The MC signal showed a high amplitude peak in the fore part caused by the reverse meal. pattern. We also found that the EP could not be detected properly and reproducibly due to the pad conditioning effect, especially when conventional low selectivity slurry was used. Even when there was no pad conditioning effect, the EPD method could not be applied, since the measured end points were always the same due to the characteristics of the reverse moat structure with an open nitride layer.