• Title/Summary/Keyword: sigmoid 함수

Search Result 110, Processing Time 0.026 seconds

Simulation of continuous snow accumulation data using stochastic method (추계론적 방법을 통한 연속 적설 자료 모의)

  • Park, Jeongha;Kim, Dongkyun;Lee, Jeonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.60-60
    • /
    • 2022
  • 본 연구에서는 적설 추정 알고리즘과 추계 일기 생성 모형을 활용하여 관측 적설의 특성을 재현하는 연속 적설심 자료 모의 방법을 소개한다. 적설 추정 알고리즘은 강수 유형 판단, Snow Ratio 추정, 그리고 적설 깊이 감소량 추정까지 총 3단계로 구성된다. 먼저 강수 발생시 지상기온과 상대습도를 지표로 활용하여 강수 유형을 판단하고, 강수가 적설로 판별되었을 때 강수량을 신적설심으로 환산하는 Snow Ratio를 추정한다. Snow Ratio는 지상 기온과의 sigmoid 함수 회귀분석을 통해 추정하였으며, precipitation rate 조건(5 mm/3hr 미만 및 이상)에 따라 두 가지 함수를 적용하였다. 마지막으로 적설 깊이 감소량은 온도 지표 snowmelt 식을 이용하여 추정하였으며, 매개변수는 적설 깊이 및 온도 관측 자료를 활용하여 보정하였다. 속초 관측소 자료를 활용하여 매개변수를 보정 및 검증하여 높은 NSE(보정기간 : 0.8671, 검증기간 : 0.7432)를 달성하였으며, 이 알고리즘을 추계 일기 생성 모형으로 모의한 합성 기상 자료(강수량, 지상기온, 습도)에 적용하여 합성 적설심 시계열을 모의하였다. 모의 자료는 관측 자료의 통계 및 극한값을 매우 정확하게 재현하였으며, 현행 건축구조기준과도 일치하는 것으로 나타났다. 이 모형을 통하여 적설 위험 분석 분야뿐 아니라 기후 전망 자료와의 결합, 미계측 지역에 대한 자료 모의 등에도 광범위하게 활용될 수 있을 것이다.

  • PDF

Prediction of KBO playoff Using the Deep Neural Network (DNN을 활용한 'KBO' 플레이오프진출 팀 예측)

  • Ju-Hyeok Park;Yang-Jae Lee;Hee-Chang Han;Yoo-Lim Jun;Yoo-Jin Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.315-316
    • /
    • 2023
  • 본 논문에서는 딥러닝을 활용하여 KBO (Korea Baseball Organization)의 다음 시즌 플레이오프 진출 확률을 예측하는 Deep Neural Network (DNN) 시스템을 설계하고 구현하는 방법을 제안한다. 연구 방법으로 KBO 각 시즌별 데이터를 1999년도 데이터부터 수집하여 분석한 결과, 각 시즌 데이터 중 경기당 평균 득점, 타자 OPS, 투수 WHIP 등이 시즌 결과에 유의미한 영향을 끼치는 것을 확인하였다. 모델 설계는 linear, softmax 함수를 사용하는 것보다 relu, tanh, sigmoid 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 2022 시즌 결과를 예측한 결과 88%의 정확도를 도출했다. 폭투의 수, 피홈런 등 가중치가 높은 변수의 값이 우수할 경우 시즌 결과가 좋게 나온다는 것이 증명되었다. 본 논문에서 설계한 이 시스템은 KBO 구단만이 아닌 모든 야구단에서 선수단을 구성하는데 활용 가능하다고 사료된다.

  • PDF

Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization (PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화)

  • Roh, Seok-Beom;Wang, Jihong;Kim, Yong-Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • In this paper, optimization technique such as particle swarm optimization was used to optimize the parameters of fuzzy Extreme Learning Machine. While the learning speed of conventional neural networks is very slow, that of Extreme Learning Machine is very fast. Fuzzy Extreme Learning Machine is composed of the Extreme Learning Machine with very fast learning speed and fuzzy logic which can represent the linguistic information of the field experts. The general sigmoid function is used for the activation function of Extreme Learning Machine. However, the activation function of Fuzzy Extreme Learning Machine is the membership function which is defined in the procedure of fuzzy C-Means clustering algorithm. We optimize the parameters of the membership functions by using optimization technique such as Particle Swarm Optimization. In order to validate the classification capability of the proposed classifier, we make several experiments with the various machine learning datas.

A Parallel Equalization Algorithm with Weighted Updating by Two Error Estimation Functions (두 오차 추정 함수에 의해 가중 갱신되는 병렬 등화 알고리즘)

  • Oh, Kil-Nam
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.32-38
    • /
    • 2012
  • In this paper, to eliminate intersymbol interference of the received signal due to multipath propagation, a parallel equalization algorithm using two error estimation functions is proposed. In the proposed algorithm, multilevel two-dimensional signals are considered as equivalent binary signals, then error signals are estimated using the sigmoid nonlinearity effective at the initial phase equalization and threshold nonlinearity with high steady-state performance. The two errors are scaled by a weight depending on the relative accuracy of the two error estimations, then two filters are updated differentially. As a result, the combined output of two filters was to be the optimum value, fast convergence at initial stage of equalization and low steady-state error level were achieved at the same time thanks to the combining effect of two operation modes smoothly. Usefulness of the proposed algorithm was verified and compared with the conventional method through computer simulations.

A Study of Structural Stability and Dynamics for Functionally Graded Material Plates and Shells using a 4-node Quasi-conforming Shell Element (4절점 준적합 쉘 요소를 이용한 점진기능재료(FGM) 판과 쉘의 구조적 안정 및 진동 연구)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.47-60
    • /
    • 2007
  • In this paper, we investigate the natural frequencies and buckling loads of functionally graded material (FGM) plates and shells, using a quasi-conforming shell element that accounts for the transverse shear strains and rotary inertia. The eigenvalue of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane, bending and shear stiffness of FGM shell element are more complicated combination of material properties than a homogeneous element. In order to validate the finite element numerical solutions, the Navier's solutions of rectangular plates based on the first-order shear deformation theory are presented. The present numerical solutions of composite and sigmoid FGM (S-FGM) plates are proved by the Navier's solutionsand various examples of composite and FGM structures are presented. The present results are in good agreement with the Navier's theoretical solutions.

Cauterizing Effect Animation for Virtual Surgery Medical Simulation (가상 수술 의료 시뮬레이션을 위한 소작 효과 애니메이션 기법)

  • Lee, Jeong-Jin;Lee, Ho;Kye, Hee-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1175-1181
    • /
    • 2011
  • Practice education using virtual medical simulation has been recently introduced to maximize the learning efficiency in clinical environment. Specially, in minimally invasive surgery, the necessity of virtual surgery medical simulation has been substantially increased. Since cauterizing effect occurred frequently in minimally invasive surgery has been represented by simple bleeding, realistic cauterizing effect animation has not been proposed yet. In this paper, we propose realistic real-time cauterizing effect animation. Proposed method changes the individual element of each vertex color of the mesh and uses sigmoid function to impose weights for the smooth color change inside the valid mesh region so that the results of cauterizing effect animation was realistic. In addition, by proposing cauterizing color buffer, overlapped cauterizing effects can be realistically represented. Proposed method greatly improves the sense of the real and absorption in virtual surgery medical simulation so that the education efficiency of doctors and students using medical simulation can be maximized.

Design and Implementation of the Digital Neuron Processor for the real time object recognition in the making Automatic system (생산자동화 시스템에서 실시간 물체인식을 위한 디지털 뉴런프로세서의 설계 및 구현)

  • Hong, Bong-Wha;Joo, Hae-Jong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.37-50
    • /
    • 2007
  • In this paper, we designed and implementation of the high speed neuron processor for real time object recognition in the making automatic system. and we designed of the PE(Processing Element) used residue number system without carry propagation for the high speed operation. Consisting of MAC(Multiplication and Accumulation) operator using residue number system and sigmoid function operator unit using MAC(Mixed Radix conversion) is designed. The designed circuits are descript by C language and VHDL(Very High Speed Integrated Circuit Hardware Description Language) and synthesized by compass tools and finally, the designed processor is fabricated in $0.8{\mu}m$ CMOS process. we designed of MAC operation unit and sigmoid proceeding unit are proved that it could run time 0.6nsec on the simulation and improved to the speed of the three times and decreased to hardware size about 50%, each order. The designed neuron processor can be implemented of the object recognition in making automatic system with desired real time processing.

  • PDF

LeafNet: Plants Segmentation using CNN (LeafNet: 합성곱 신경망을 이용한 식물체 분할)

  • Jo, Jeong Won;Lee, Min Hye;Lee, Hong Ro;Chung, Yong Suk;Baek, Jeong Ho;Kim, Kyung Hwan;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Plant phenomics is a technique for observing and analyzing morphological features in order to select plant varieties of excellent traits. The conventional methods is difficult to apply to the phenomics system. because the color threshold value must be manually changed according to the detection target. In this paper, we propose the convolution neural network (CNN) structure that can automatically segment plants from the background for the phenomics system. The LeafNet consists of nine convolution layers and a sigmoid activation function for determining the presence of plants. As a result of the learning using the LeafNet, we obtained a precision of 98.0% and a recall rate of 90.3% for the plant seedlings images. This confirms the applicability of the phenomics system.

Predictive Modeling Design for Fall Risk of an Inpatient based on Bed Posture (침대 자세 기반 입원 환자의 낙상 위험 예측 모델 설계)

  • Kim, Seung-Hee;Lee, Seung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.51-62
    • /
    • 2022
  • This study suggests a design of predictive modeling for a hospital fall risk based on inpatients' posture. Inpatient's profile, medical history, and body measurement data along with basic information about a bed they use, were used to predict a fall risk and suggest an algorithm to determine the level of risk. Fall risk prediction is largely divided into two parts: a real-time fall risk evaluation and a qualitative fall risk exposure assessment, which is mostly based on the inpatient's profile. The former is carried out by recognizing an inpatient's posture in bed and extracting rule-based information to measure fall risk while the latter is conducted by medical staff who examines an inpatient's health status related to hospital fall risk and assesses the level of risk exposure. The inpatient fall risk is determined using a sigmoid function with recognized inpatient posture information, body measurement data and qualitative risk assessment results combined. The procedure and prediction model suggested in this study is expected to significantly contribute to tailored services for inpatients and help ensure hospital fall prevention and inpatient safety.

Quantitative Analysis for Win/Loss Prediction of 'League of Legends' Utilizing the Deep Neural Network System through Big Data

  • No, Si-Jae;Moon, Yoo-Jin;Hwang, Young-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2021
  • In this paper, we suggest the Deep Neural Network Model System for predicting results of the match of 'League of Legends (LOL).' The model utilized approximately 26,000 matches of the LOL game and Keras of Tensorflow. It performed an accuracy of 93.75% without overfitting disadvantage in predicting the '2020 League of Legends Worlds Championship' utilizing the real data in the middle of the game. It employed functions of Sigmoid, Relu and Logcosh, for better performance. The experiments found that the four variables largely affected the accuracy of predicting the match --- 'Dragon Gap', 'Level Gap', 'Blue Rift Heralds', and 'Tower Kills Gap,' and ordinary users can also use the model to help develop game strategies by focusing on four elements. Furthermore, the model can be applied to predicting the match of E-sports professional leagues around the world and to the useful training indicators for professional teams, contributing to vitalization of E-sports.