본 논문에서는 시그모이드 함수와 시그모이드 함수의 도함수로 유도한 RBF의 직교관계에 착안하여 은닉충에 직교함수를 활성화함수로 갖는 신경회로망을 제안한다. 제안하는 신경회로망을 직교신경회로망(ONN)이라고 한다. 제안한 방식의 유용성을 확인하기 위하여 비선형 함수의 근사 시뮬레이션에 의해 사상능력을 검토하고, 각각의 단일함수만을 적용한 경우와 비교·검토한다.
본 논문에서는 유전자알고리즘을 이용한 시그모이드 활성화 함수 파라미터의 최적화와 이중나선기준문제(two spirals benchmark problem)의 입력공간 패턴인식 상태를 분석 한다. 실험을 위하여 캐스케이드 코릴레이션 학습 알고리즘(Cascade Correlation learning algorithm)을 이용한다. 첫 번째 실험에서는 기본적인 시그모이드 활성화 함수를 사용하여 이중나선 문제를 분석하고, 두 번째 실험에서는 시그모이드 활성화 함수(sigmoidal activation function)의 파라미터 값이 서로 다른 함수를 사용하여 8개의 풀을 구성한다. 세 번째 실험에서는 시그모이드 함수의 변위를 결정하는 세 개의 파라미터 값을 유전자 알고리즘을 이용하여 얻고 이 파라미터 값들이 적용된 시그모이드 함수들은 후보뉴런의 활성화를 위해서 사용된다. 이러한 알고리즘의 성능평가를 위하여 각 학습단계 마다 입력패턴공간에서 인식된 이중나선의 형태를 보여준다.
디지털 신경회로망의 구현에 있어 시그모이드 함수의 구현은 매우 복잡하고 구현하기 어렵다. 따라서, 본 논문에서는 디지털 신경회로망 구현에 문제가 되는 시그모이드 함수처리를 위한 설계 방법을 제안하였다. 제안된 방법은 잉여수계를 이용하여 MAC(Multiplier and Accumulator) 연산 시, 캐리 전파 없이 고속의 연산을 수행할 수 있고 시그모이드 함수처리를 고속으로 수행할 수 있다. 모의실험결과, 각각의 신경 프로세스에 있어서 4.6nsec 이상의 속도를 보임으로써 고속디지털 신경회로망 구현에 적용될 수 있을 것으로 기대된다.
본 논문에서는 비모노톤함수(non-monotone function)인 CosExp(cosine-modulated symmetric Exponential function) 함수와 모노톤함수(monotone function)인 시그모이드 함수를 캐스케이드 코릴레이션 알고리즘(Cascade Correlation algorithm)의 학습에 병행해서 사용하여 이중나선문제(two spirals problem)의 패턴인식에 어떠한 영향이 있는지 분석하고 이어서 알고리즘의 최적화를 시도한다. 첫 번째 실험에서는 알고리즘의 후보뉴런에 CosExp 함수를 그리고 출력뉴런에는 시그모이드 함수를 사용하여 나온 인식된 패턴을 분석한다. 두 번째 실험에서는 반대로 CosExp 함수를 출력뉴런에서 사용하고 시그모이드 함수를 후보뉴런에 사용하여 실험하고 결과를 분석한다. 세 번째 실험에서는 후보뉴런을 위한 8개의 풀을 구성하여 변형된 다양한 시그모이드 활성화 함수(sigmoidal activation function)를 사용하고 출력뉴런에는 CosExp함수를 사용하여 얻게 된 입력공간의 인식된 패턴을 분석한다. 네 번째 실험에서는 시그모이드 함수의 변위를 결정하는 세 개의 파라미터 값을 유전자 알고리즘을 이용하여 얻는다. 이 파라미터 값들이 적용된 시그모이드 함수들은 후보뉴런의 활성화를 위해서 사용되고 출력뉴런에는 CosExp 함수를 사용하여 실험한 최적화 된 결과를 분석한다. 이러한 알고리즘의 성능평가를 위하여 각 학습단계 마다 입력패턴공간에서 인식된 이중나선의 형태를 그래픽으로 보여준다. 최적화 과정에서 은닉뉴런(hidden neuron)의 숫자가 28에서 15로 그리고 최종적으로 12개로 줄어서 학습 알고리즘이 최적화되었음을 확인하였다.
본 논문에서는 하드웨어레벨로 구현이 어렵고 속도가 느린 sigmoid 함수를 PLAN을 이용하여 근사치로 출력하였다. 이를 MLP 구조의 활성화 함수로 사용하여 자원소모를 줄이고 속도를 개선하고자 하였다. 본 논문에서 제안하는 방법은 $5{\times}5$크기의 숫자 인식에 약 95%의 정확도를 유지하면서 GPGPU보다 약 1.83배의 빠른 속도를 보였다. 또한 MLPA가속기와 비슷한 자원을 사용함에도 더 많은 뉴런을 사용하여 높은 정확도에 빠른 속도로 수렴하는 것을 확인하였다.
소프트웨어 시험단계에 투입되는 노력의 분포를 추정하는 대표적인 모델로 Weibull 분포(Rayleigh와 지수분포 포함)가 있다. 이 모델은 시험 시작시점에서 실제로 많은 노력이 투입되는 점을 표현하지 못한다. 또한 다양한 형태를 갖고 있는 실제 시험 노력의 분포를 적절히 표현하지 못하고 있다. 이러한 문제점을 해결하기 위해 본 논문은 시그모이드 모델을 제안하였다. 신경망 분야에서 적용되고 있는 시그모이드 함수로부터 소프트웨어 시험 노력을 적절히 표현할 수 있도록 함수 형태를 변형시켰다 제안된 모델은 다양한 분포 형태를 보이고 있는 실제 수행된 소프트웨어 프로젝트로부터 얻어진 6개의 시험 노력 데이터에 적용하여 적합성을 검증하였다. 제안된 시그모이드 모델은 기존의 Weibull 모델보다 성능이 우수하여 소프트웨어 시험노력을 추정하는데 있어 와이블 모델의 대안으로 채택될 수 있을 것이다.
비동기 부호 분할 다중 접속(Code Division Multiple Access: CDMA) 시스템을 위한 다단(mutistage) 간섭 제거 검출기의 매 단에서 기존에 사용되어 온 경판정(hard decision)을 대신할 수 있는 연판정(soft decision) 함수의 설계를 고려한다. 특히, 평균 제곱 오류(mean square error: MSE)의 관점에서 최적인 시그모이드(sigmoid) 함수와 구현시 복잡도를 줄이면서 시그모이드 함수를 가장 잘 근사화하는 다단계 양자화기(multu-level quantizer)들을 유도한다. 다단 검출기의 매 단에서 이들 판정 함수들의 변수는 산출된 입력 특성에 의해 조정된다. 컴퓨터 모의 실험을 통하여 이들 연판정 함수를 갖는 다단 검출기가 경판정을 사용하는 경우보다 현저하게 성능을 향상시킴을 보인다.
본 논문에서는 제어대상의 사전정보가 미지인 경우의 동정 및 제어를 위하여 직교함수 신경회로망을 제안한다. 제안하는 직교함수 신경회로망은 은닉층 앞에 버퍼층을 사용하고 은닉층에는 시그모이드 함수와 시그모이드 함수의 도함수로 유도한 RBF를 이용한 직교함수를 사용하였다. 제안한 방식의 유용성을 확인하기 위하여 Narendra 모델의 동정 시뮬레이션에 의해 동정능력을 검토하였다. 또한, 제어 시스템을 구성하고 시뮬레이션 및 실험을 통하여 유용성을 확인하였다.
본 논문에서는 기존의 신경망 등화기의 비트 오류 확률 관점에서의 성능 향상을 위해 이차 시그모이드 함수를 활성 함수로 이용한 이차 시그모의 신경망 등화기를 제안한다. 비선형 왜곡을 보정하기 위해 사용되어온 기존의 신경망 등화기들은 일반적으로 활성 함수로서 시그모이드 함수를 이용한다. 기존의 시그모이드 함수를 이용한 신경망 등화기의 경우 하나의 뉴론은 한 개의 선형적인 경계 면을 형성한다. 따라서 복잡한 경계 면을 형성하기 위해 많은 수의 뉴론이 필요하게 된다. 하지만 제안하는 신경망을 등화기에서는 한 뉴론이 평행한 두 개의 직선을 가지고 평면 영역을 분할하기 때문에 보다 간단한 구조로 비트 오류 확률 관점에서 우수한 성능을 얻을 수 있다. 제안한 이차 시그모이드 신경망 결정궤한 등화기를 통신 환경 및 디지털 자기기록 시스템에 적용하였을 때, 기존의 결정궤환 등화기와 신경망 결정궤한 등화기에 비해 같은 비트 오류 확률 관점에서 신호 대 잡음비가 1.5dB~8.3dB 정도의 성능향상을 보인다. 특히 심벌간의 간섭이 심하거나, 비선형성이 강한 환경에서 기존의 일반적인 결정궤한 등화기와 신경망 결정궤한 등화기에 비하여 비트 오류 확률 관점에서 두드러진 신호 대 잡음비의 성능 이득을 보인다.
본 논문에서는 비전공자들을 위한 교양과정으로, 기초 인공신경망 과목 커리큘럼을 설계하기 위해, 지도학습 인공신경망 매개변수 최적화 방법과 활성화함수에 대한 기초 교육 방법을 제안하였다. 이를 위해, 프로그래밍 없이, 매개 변수 최적화 해를 스프레드시트로 찾는 방법을 적용하였다. 본 교육 방법을 통해, 인공신경망 동작 및 구현의 기초 원리 교육에 집중할 수 있다. 그리고, 스프레드시트의 시각화된 데이터를 통해 비전공자들의 관심과 교육 효과를 높일 수 있다. 제안한 내용은 인공뉴런과 Sigmoid, ReLU 활성화 함수, 지도학습데이터의 생성, 지도학습 인공신경망 구성과 매개변수 최적화, 스프레드시트를 이용한 지도학습 인공신경망 구현 및 성능 분석 그리고 교육 만족도 분석으로 구성되었다. 본 논문에서는 Sigmoid 뉴런 인공신경망과 ReLU 뉴런 인공신경망에 대해 음수허용 매개변수 최적화를 고려하여, 인공신경망 매개변수 최적화에 대한 네가지 성능분석결과를 교육하는 방법을 제안하고 교육 만족도 분석을 실시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.