• Title/Summary/Keyword: sifting algorithm

Search Result 5, Processing Time 0.019 seconds

Search space pruning technique for optimization of decision diagrams (결정 다이어그램의 최적화를 위한 탐색공간 축소 기법)

  • Song, Moon-Bae;Dong, Gyun-Tak;Chang, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2113-2119
    • /
    • 1998
  • The optimization problem of BDDs plays an improtant role in the area of logic synthesis and formal verification. Since the variable ordering has great impacts on the size and form of BDD, finding a good variable order is very important problem. In this paper, a new variable ordering scheme called incremental optimization algorithm is presented. The proposed algorithm reduces search space more than a half of that of the conventional sifting algorithm, and computing time has been greatly reduced withoug depreciating the performance. Moreover, the incremental optimization algorithm is very simple than other variable reordering algorithms including the sifting algorithm. The proposed algorithm has been implemented and the efficiency has been show using may benchmark circuits.

  • PDF

Mode identifiability of a cable-stayed bridge under different excitation conditions assessed with an improved algorithm based on stochastic subspace identification

  • Wu, Wen-Hwa;Wang, Sheng-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.363-389
    • /
    • 2016
  • Deficient modes that cannot be always identified from different sets of measurement data may exist in the application of operational modal analysis such as the stochastic subspace identification techniques in large-scale civil structures. Based on a recent work using the long-term ambient vibration measurements from an instrumented cable-stayed bridge under different wind excitation conditions, a benchmark problem is launched by taking the same bridge as a test bed to further intensify the exploration of mode identifiability. For systematically assessing this benchmark problem, a recently developed SSI algorithm based on an alternative stabilization diagram and a hierarchical sifting process is extended and applied in this research to investigate several sets of known and blind monitoring data. The evaluation of delicately selected cases clearly distinguishes the effect of traffic excitation on the identifiability of the targeted deficient mode from the effect of wind excitation. An additional upper limit for the vertical acceleration amplitude at deck, mainly induced by the passing traffic, is subsequently suggested to supplement the previously determined lower limit for the wind speed. Careful inspection on the shape vector of the deficient mode under different excitation conditions leads to the postulation that this mode is actually induced by the motion of the central tower. The analysis incorporating the tower measurements solidly verifies this postulation by yielding the prevailing components at the tower locations in the extended mode shape vector. Moreover, it is also confirmed that this mode can be stably identified under all the circumstances with the addition of tower measurements. An important lesson learned from this discovery is that the problem of mode identifiability usually comes from the lack of proper measurements at the right locations.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

Data-Driven Signal Decomposition using Improved Ensemble EMD Method (개선된 앙상블 EMD 방법을 이용한 데이터 기반 신호 분해)

  • Lee, Geum-Boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.279-286
    • /
    • 2015
  • EMD is a fully data-driven signal processing method without using any predetermined basis function and requiring any user parameters setting. However EMD experiences a problem of mode mixing which interferes with decomposing the signal into similar oscillations within a mode. To overcome the problem, EEMD method was introduced. The algorithm performs the EMD method over an ensemble of the signal added independent identically distributed white noise of the same standard deviation. Even so EEMD created problems when the decomposition is complete. The ensemble of different signal with added noise may produce different number of modes and the reconstructed signal includes residual noise. This paper propose an modified EEMD method to overcome mode mixing of EMD, to provide an exact reconstruction of the original signal, and to separate modes with lower cost than EEMD's. The experimental results show that the proposed method provides a better separation of the modes with less number of sifting iterations, costs 20.87% for a complete decomposition of the signal and demonstrates superior performance in the signal reconstruction, compared with EEMD.

A Study on the Predictive Power Improvement of Time Series Model with Empirical Mode Decomposition Method (경험적 모드분해법을 이용한 시계열 모형의 예측력 개선에 관한 연구)

  • Kim, Taereem;Shin, Hongjoon;Nam, Woosung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.981-993
    • /
    • 2015
  • The analysis of hydrologic time series data is crucial for the effective management of water resources. Therefore, it has been widely used for the long-term forecasting of hydrologic variables. In tradition, time series analysis has been used to predict a time series without considering exogenous variables. However, many studies using decomposition have been widely carried out with the assumption that one data series could be mixed with several frequent factors. In this study, the empirical mode decomposition method was performed for decomposing a hydrologic time series data into several components, and each component was applied to the time series models, autoregressive moving average (ARMA). After constructing the time series models, the forecasting values are added to compare the results with traditional time series model. Finally, the forecasted estimates from ARMA model with empirical mode decomposition method showed better performance than sole traditional ARMA model indicated from comparing the root mean square errors of the two methods.