• Title/Summary/Keyword: side bonded

Search Result 105, Processing Time 0.018 seconds

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.

A STUDY ON THE MECHANICAL PROPERTIES OF EXPERIMENTAL, COMPOSITES CONTAINING ZIRCONIA FILLER (지르코니아 필러를 첨가한 복합레진의 기계적 성질에 관한 연구)

  • Rew, Kyung-Hee;Choi, Ho-Young;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.421-434
    • /
    • 2000
  • The purpose of this study was to evaluate the influences of incorporation of zirconium-silicate on diametral tensile strength, shear bond strength to the enamel, and depth of cure of 7 experimental composites. One group contained no filler(group 1 or control group), and the other 6 composites contain 75% filler in which zirconium-silicate(Zr-Si) were 0%, 2%, 4%, 6%, 8%, 10% with reduced contents of silica filler, respectively. Both of fillers were treated with 1% silane (${\gamma}$-methacryloxypropyltrimethoxy silane). Light curable monomers were prepared by mixing Bis-GMA and TEGDMA with 3:1 ratio and adding camphoroquinone(CQ) 0.6% with tertiary amine 0.3%. Diametral tensile strengths of specimens with $3mm{\times}6mm$ were measured with Instron (No.4467, USA) with 1mm/min crosshead speed. Shear bond strengths of composites which bonded to bovine enamel etched with 37% phosphoric acid were measured at Instron Testing Machine with as same speed as in diametral tensile strengths. Depth of cure were measured by a method that composite was filled in cylinder mold, illuminated at one side. and uncured composite was removed with acetone, and the residual thickness of composite was measured. Following results were obtained ; 1. Composites containing 0%, 2%, or 4% zirconium-silicate filler(group 2, 3 and 4) showed the statistically higher diametral tensile strength than the others. (p<0.05) 2. Increase of zirconium-silicate filler contents reduced the diametral tensile strength of experimental composites. ($r^2$=0.8721, p=0.0002) 3. Increase of zirconium-silicate filler contents did not affect the shear bond strength of experimental composites. ($r^2$=0.2815, p=0.4067) 4. Increase of zirconium-silicate filler contents reduced significantly the depth of cure of experimental composites. ($r^2$=0.9700, p<0.0001) These results mean that the mechanical properties of composites could not be improved by incorporation of small amount of zirconium-silicate filler. Also, the increased contents of zirconium-silicates fillers was found to reduce the diametral tensile strength and depth of cure.

  • PDF

Effect of Recycled Coarse Aggregate (RCA) Replacement Level on the Bond Behaviour between RCA Concrete and Deformed Rebars (순환 굵은골재의 혼입률에 따른 콘크리트와 이형철근의 부착 거동)

  • Jang, Yong-Heon;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.123-130
    • /
    • 2010
  • In this study, mixed recycled coarse aggregate (RCA) was produced by mixing RCA from waste concrete in order to evaluate a new method of RCA production. Bond strength between reinforcing bars and RCA concrete was qualitatively evaluated as a part of continuous studies to establish design code of reinforced concrete structural members using recycled aggregate. For practical application, specimens were manufactured with the ready mix RCA concrete. Parameters investigated include: concrete compressive strength (i.e 21, 27 and 40 MPa), replacement levels (i.e 0, 30, 60 and 100%), bar position (i.e vertical and horizontal) and bar location (75 and 225 mm). For the pull-out test, each specimen was in the form of a cube, with each side of 150 mm in length and a deformed bar, 16 mm in diameter, was embedded in the center of each specimen. From the test results, the most of HT type specimen with compressive strength of 21 and 27 MPa showed lower bond strength than the ones provided in CEB-FIP and considered in reinforcement location factor ($\alpha\;=\;1.3$). It was reasoned that bonded area of top bar specimen was reduced at the soffit of reinforcement because of bleed water of fresh concrete. Therefore the reinforcement location factor in current KCI design code should be reviewed and modified.

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

Probe of Unfilled Sheath of Prestressed-Concrete Girder Bridge Using Impact-Echo Method (충격탄성파법을 이용한 PC형교의 쉬이스 내부 그라우트 미충전부 탐사)

  • Lee, Sang Hun;Kim, Sang Jin;Endo, Takao;Sagara, Yuzo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.112-119
    • /
    • 2011
  • Sheaths are arranged in the web and lower part of prestressed-concrete girder bridges, and prestressing wires and concrete are indirectly bonded together by filling interior parts of the sheaths. However, when the filling is not sufficient, water can penetrate the interior parts of the sheaths and, thereby, prestressing wires can be corroded or transverse cracks would occur around sheaths by the freezing and thawing action of the penetrated water. Therefore, it is an important element in maintenance management of structures to find out the sheaths unfilled with grout early after construction. In this paper, in order not to damage bridge members, the impact-echo method with a new approach in application is used to probe sheaths unfilled with grout for real structures. The location of sheaths is first estimated with reinforcing bar probing instrument of radar type and the measurement locations of sheaths are determined. By sending elastic wave to the side of girders and receiving the response, the location of the unfilled part of a sheath was estimated from the difference between high frequency peak and twice the resonance frequency indicating thickness. To verify the location of void estimated by the impact-echo method, pictures were taken by an industrial fiber scope after drilling a hole.