• Title/Summary/Keyword: shrinkage value

Search Result 270, Processing Time 0.023 seconds

Thermal properties of glass-ceramics made with zircon and diopside powders

  • Lee, Dayoung;Kang, Seunggu
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.504-508
    • /
    • 2018
  • Diopside is a ceramic material with excellent physical and chemical properties. However, when it is applied as an LED packaging material, heat dissipation of the LED element is not sufficient due to its relatively lower thermal conductivity, which may cause degradation of the LED function. In this study, glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system, in which diopside is the main crystal phase, were prepared by heat-treating the glass, which was composed of zircon ($ZrO_2-SiO_2$) powders and diopside ($CaO-MgO-2SiO_2$) powders. The possibility of using the glass-ceramics as a packaging material for LEDs was then investigated by analyzing the density, shrinkage, thermal conductivity, and phases generated according to the amount of zircon powder added. The density and shrinkage of specimens decreased slightly and then increased again with the amount of $ZrO_2-SiO_2$ added within a range of 0~0.38 mol. Even though the crystal phase of zircon does not appear in the $ZrO_2-CaO-MgO-SiO_2$ system, the glass containing 0.38 mol zircon powder showed the highest thermal conductivity, 1.85 W/mK, among the specimens fabricated in this study: this value was about 23% higher than that of pure diopside. It was found that the thermal conductivity of the glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system was closely related to the density, but not to the phase type. Zirconia ($ZrO_2$), a component oxide of zircon, plays an important role in increasing the density of the specimen. Furthermore the thermal conductivity of glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system showed a nearly linear relationship with thermal diffusivity.

Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite

  • Yang Zhang;Yanping Zhu;Pengfei Ma;Shuilong He;Xudong Shao
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.359-376
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) has become an attractive cast-in-place repairing material for existing engineering structures. The present study aims to investigate age-dependent high-early-strength UHPC (HESUHPC) material properties (i.e., compressive strength, elastic modulus, flexural strength, and tensile strength) as well as interfacial shear properties of HESUHPC-normal strength concrete (NSC) composites cured at different season temperatures (i.e., summer, autumn, and winter). The typical temperatures were kept for at least seven days in different seasons from weather forecasting to guarantee an approximately consistent curing and testing condition (i.e., temperature and relative humidity) for specimens at different ages. The HESUHPC material properties are tested through standardized testing methods, and the interfacial bond performance is tested through a bi-surface shear testing method. The test results quantify the positive development of HESUHPC material properties at the early age, and the increasing amplitude decreases from summer to winter. Three-day mechanical properties in winter (with the lowest curing temperature) still gain more than 60% of the 28-day mechanical properties, and the impact of season temperatures becomes small at the later age. The HESUHPC shrinkage mainly occurs at the early age, and the final shrinkage value is not significant. The HESUHPC-NSC interface exhibits sound shear performance, the interface in most specimens does not fail, and most interfacial shear strengths are higher than the NSC-NSC composite. The HESUHPC-NSC composites at the shear failure do not exhibit a large relative slip and present a significant brittleness at the failure. The typical failures are characterized by thin-layer NSC debonding near the interface, and NSC pure shear failure. Two load-slip development patterns, and two types of main crack location are identified for the HESUHPC-NSC composites tested in different ages and seasons. In addition, shear capacity of the HESUHPC-NSC composite develops rapidly at the early age, and the increasing amplitude decreases as the season temperature decreases. This study will promote the HESUHPC application in practical engineering as a cast-in-place repairing material subjected to different natural environments.

Effects of the Content of MgO Additive and Sintering Temperature on the Densification of Alumina Insulator (인슐레이터용 알루미나의 치밀화에 미치는 MgO의 함량과 소결 온도의 영향)

  • Ri Joo Kim;Han Gyeol Jeong;Ye Ji Son;Sang Ki Ko;Hyun Seon Hong
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.249-254
    • /
    • 2023
  • The influence of MgO addition on the densification and microstructure of alumina (Al2O3) was studied. Compacted alumina specimens were manufactured using ball-milling and one-directional pressing followed by sintering at temperatures below 1700℃. Relative density, shrinkage, hardness, and microstructure were investigated using analytical tools such as FE-SEM, EDS, and XRD. When the MgO was added up to 5.0 wt% and sintered at 1500℃ and 1600℃, the relative density exhibited an average value of 97% or more at both temperatures. The maximum density of 99.2% was with the addition of 0.5 wt% MgO at 1500℃. Meanwhile, the specimens showed significantly lower density values when sintered at 1400℃ than at 1500℃ and 1600℃ owing to the relatively low sintering temperature. The hardness and shrinkage data also showed a similar trend in the change in density, implying that the addition of approximately 0.5 wt% MgO can promote the densification of Al2O3. Studying the microstructure confirmed the uniformity of the sintered alumina. These results can be used as basic compositional data for the development of MgO-containing alumina as high-dielectric insulators.

Influence of Two-Dimensional and Three-Dimensional Acquisitions of Radiomic Features for Prediction Accuracy

  • Ryohei Fukui;Ryutarou Matsuura;Katsuhiro Kida;Sachiko Goto
    • Progress in Medical Physics
    • /
    • v.34 no.3
    • /
    • pp.23-32
    • /
    • 2023
  • Purpose: In radiomics analysis, to evaluate features, and predict genetic characteristics and survival time, the pixel values of lesions depicted in computed tomography (CT) and magnetic resonance imaging (MRI) images are used. CT and MRI offer three-dimensional images, thus producing three-dimensional features (Features_3d) as output. However, in reports, the superiority between Features_3d and two-dimensional features (Features_2d) is distinct. In this study, we aimed to investigate whether a difference exists in the prediction accuracy of radiomics analysis of lung cancer using Features_2d and Features_3d. Methods: A total of 38 cases of large cell carcinoma (LCC) and 40 cases of squamous cell carcinoma (SCC) were selected for this study. Two- and three-dimensional lesion segmentations were performed. A total of 774 features were obtained. Using least absolute shrinkage and selection operator regression, seven Features_2d and six Features_3d were obtained. Results: Linear discriminant analysis revealed that the sensitivities of Features_2d and Features_3d to LCC were 86.8% and 89.5%, respectively. The coefficients of determination through multiple regression analysis and the areas under the receiver operating characteristic curve (AUC) were 0.68 and 0.70 and 0.93 and 0.94, respectively. The P-value of the estimated AUC was 0.87. Conclusions: No difference was found in the prediction accuracy for LCC and SCC between Features_2d and Features_3d.

Evaluation of the Performance of the PVA Fiber Reinforced Inorganic Binder and Industrial By-products Building Board

  • Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 2013
  • The test on the mix of PVA fiber of low carbon inorganic composite as a cement substitute found it to be satisfactory in terms of flexibility and stiffness. The result of the evaluation of the properties of low carbon inorganic panel revealed that the absorptivity was low at 8 to 9%, which is lower than the KS value of 25%. Also, the test on non-combustibility and gas toxicity found that these factors satisfied the decision criteria. In the test on heavy metals discharges, Pb, Cd, Cr6+, Hg, and As were not detected. Regarding far-Infrared emissivity and formaldehyde emission, the substitute was found to be harmless to the human body. Therefore, if the issue of shrinkage, which is a disadvantage of inorganic composites, is addressed, it is judged that it is possible to develop a low carbon inorganic composite panel with better performance.

A Comparative Study of Microstructure and Fracture Behavior in Reaction-Bonded Alumina (반응결합한 알루미나의 미구조와 파괴거동에 대한 비교 연구)

  • 이종호;장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.517-524
    • /
    • 1992
  • For the present study two alumina bodies were prepared. The sinter-aid alumina body(SAA) was made by conventional sinter-process using sintering additives of TiO2 & MgO/CaO and the reaction-bonded alumina (RBA) made from Al-Al2O3 mixed powder. A comparison was made between those two bodies and this investigation seeks to evaluate their microstructure, physical properties and material's reliability as well as their fracture behaviour. In spite of its considerable microstructural densification accompanied by sintering shrinkage, SAA is largely inferior to RBA in fracture strength. However, SAA shows a somewhat higher m-value than RBA in respect to the material's reliability, the Weibull modulus(m). RBA, which has high fracture strength, shows much longer lifetime under static loading than SAA. Though, as with m of fracture strength, the reliability(mt) of lifetime prediction in RBA is less high than of SAA.

  • PDF

Measurement of Residual and Internal Strain of 3-D Braided Hybrid Composite using Embedded FBG Sensor (FBG 센서를 삽입한 3차원 브레이드 하이브리드 복합재료의 잔류변형률 및 내부변형률 측정)

  • Jung, Kyung-Ho;Kim, Don-Gun;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.21-24
    • /
    • 2005
  • Three dimensional circular braided Glass/Aramid hybrid fabric/epoxy resin composite was fabricated. FBG sensor was embedded along the braid yam in order to monitor the internal dimensional changes of the 3-D braid composite. The amount of cure and thermal shrinkage of epoxy resin was also determined using FBG sensor system. FBG sensors with different grating length were embedded and their response were compared. The thermo-optic coefficient of FBG sensor was measured by several preliminary experiments. The internal strain that measured by FBG sensor and electric strain gauge was compared during compressive test. The released residual strain of the fabricated tubular composite was estimated using cutting method. The internal strain of the composite was estimated using FBG sensor system, and the result was compared with the value from electric strain gauge. It was found that FBG sensor system is a very useful technique to investigate inside region of complicated structure.

  • PDF

Cracking Behavior of Steel-Concrete Composite Girders at Negative Moment Region (합성거더 부모멘트부의 균열거동 평가)

  • Youn, Seok-Goo;Seol, Dae-Ho;Ryu, Hyung-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.402-405
    • /
    • 2006
  • Inner support regions of continuous steel and concrete composite bridge decks, transverse crackings are easely developed by tensile forces due to live loads and primary and secondary effects of concrete shrinkage. Since these cracks have an influence on the durability of bridge decks, crack width should be controlled within allowable limit values. Although crack width is a function of steel stress, bar diameter, bar spacing, etc, the current code for the amount of longitudinal reinforcements provides only one value of 2 percent of the concrete area. In order to investigate cracking bahaviors of composite girders with the variation of the longitudinal steel ratios, negative flexural tests are conducted on five composite girders and crack width and crack spacing are compared to ACI Code and Eurocode. Based on the test results, it is discussed the suitability of the current code for the longitudinal steel ratio.

  • PDF

Microwave-assisted Sintering of Amorphous Powders

  • Lee, Hoi-Kwan;Kim, Ki-Min;Park, Man-Kyu;Kang, Won-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • Microwave heating (MW) was studied for the sintering of amorphous powders. In comparison to conventional heating (CV), the results show that microwave heating has the potential to substantially accelerate the sintering process and allow for highly densified solidification by eliminating the pores and increasing the shrinkage rate. In the heat treatment to synthesize aluminum borate ($Al_{18}B_4O_{33}$) whiskers from precursors, it was found that microwave heating helps the formation of $Al_{18}B_4O_{33}$ crystal as well as the decrease of crystallization temperature of $Al_{18}B_4O_{33}$ to a level significantly lower than the previously reported value of $1050^{\circ}C$.

Effect of the Mold Temperatures on the Microstructure and Mechanical Properties of Low Pressure Die-Cast Product (저압주조품의 미세조직과 기계적성질에 미치는 금형온도의 영향)

  • Lee, Jeong-Keun;Park, Chong-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.254-261
    • /
    • 1998
  • Microstructure and mechanical properties of the low pressure die-cast Al wheels were investigated by microscope, image analyzer, NDT (non-destructive test), and tensile test. The variation of SDAS (secondary dendrite arm spacing), porosity per unit area, quality grade, and tensile properties with the mold temperatures were examined. SDAS was gradually decreased with a decrease in temperature. However, the lowest value of porosity per unit area was observed at the mold temperature of $405^{\circ}C$ and the optimum mold temperature was found to be $405^{\circ}C$. Besides, from the observation of pore morphology, it was also found that the pore formation was mainly caused by shrinkage during solidification. The tensile strength, elongation, and impact toughness were markedly decreased, however the yield strength was nearly constant. The decrease of mechanical properties is attributed to the increase of porosity.

  • PDF