• Title/Summary/Keyword: shrinkage reduction

Search Result 294, Processing Time 0.033 seconds

Restrained Shrinkage Properties of Polypropylene Fiber Reinforced Rapid-Setting Cement Concrete (합성섬유보강 초속경 콘크리트의 구속건조수축 특성)

  • 원치문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • The rapid-set cement concrete causes high hydration temperature and nay result in a high drying shrinkage and shrinkage-induced cracking. This problem may be fixed by incorporating polypropylene fibers in rapid-set cement concrete, because of increased toughness, resistance to impact, corrosion, fatigue, and durability. A series of concrete drving shrinkage tests was peformed in order to investigate the shrinkage properties of polypropylene fiber reinforced concrete with experimental variables such as concrete types, fiber reinforcement, W/C ratio, with and without restraint. Uni-axially restrained bar specimens were used for the restrained shrinkage tests. The results were as follows; The dry shrinkage of rapid-set cement concrete was much lessor than that oi OPC, probably because of smaller weight reduction rate by early hydration and strength development. The constraint and bridging effects caused by polypropylene fibers were great for the rapid-setting cement concrete when compared with that of plain concrete, and this resulted In increased resistance against tensile stress and cracking.

Reduction of Autogenous Shrinkage of HPFRCC Depending on Changes of ERCO Replacement Ratio and Fiber Replacement Ratio (ERCO 혼입율과 섬유혼입비 변화에 따른 HPFRCC의 자기수축저감)

  • Lee, Jea-Hyeon;Baek, Cheol;Jo, Man-Ki;Jo, Sung-Jun;Lee, Jong-Tea;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.30-31
    • /
    • 2016
  • As the treatments of many kinds of explosive objects increase recently, it is in the trend that explosion accidents increase. Thus, many studies on HPFRCC (High-performance Fiber-reinforced Cement Composites) whose ductility is enhanced are being conducted actively in order to minimize the damages from explosion accidents. However, HPFRCC, the self-shrinkage of HPFRCC is on the rise as a problem since it becomes ultra-high strengthened by using low W/B. Thus, in this study, it is intended to evaluate the capacity for reducing the self-shrinkage of HPFRCC depending on some changes of ERCO(Emulsified Refined Cooking Oil) replacement ratio and the fiber replacement ratio between some short steel fibers (SS) and some long organic fibers (OL). As a result, it was found that some excellent effects are exerted since the self-shrinkage was reduced a lot as the ERCO replacement ratio increases and the fiber replacement ratio of SS rather than OL increases.

  • PDF

An Experimental Study of Injection Molding for Multi-beam Sensing Lens Using The Change of Gate Geometry (금형 게이트 크기 변화에 따른 멀티빔 센서용 렌즈 사출성형성 향상에 관한 연구)

  • Cho, S.W.;Kim, J.S.;Yoon, K.H.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.333-338
    • /
    • 2011
  • Rapidly developing IT technologies in recent years have raised the demands for high-precision optical lenses used for sensors, digital cameras, cell phones and optical storage media. Many techniques are required to manufacturing high-precision optical lenses, including multi-beam sensing lenses investigated in the current study. In the case of injection molding for thick lenses, a shrinkage phenomenon often occurs during the process. This shrinkage is known to be the main reason for the lower optical quality of the lenses. In the present work, a CAE analysis was conducted simultaneously with experiments to understand and minimize this phenomenon. In particular, the sectional area of a gate was varied in order to understand the effects of packing and cooling processes on the final shrinkage pattern. As a result of this study, it was demonstrated that a dramatic reduction of the shrinkage could be obtained by increasing the width of the gate.

Mechanical and Drying Shrinkage of Concrete Replaced with Recycled Coarse Aggregate with Less than 13mm in Size (13mm이하 순환 굵은골재 치환에 따른 콘크리트의 역학적 특성 및 건조수축)

  • Lee, Sun-Jae;Kim, Sang-Sup;Park, Young-Jun;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.63-64
    • /
    • 2015
  • This study has analyzed mechanical and dry shrinkage properties according to the recycled coarse aggregate by nominal strength actually being widely used at the Remicon companies for the purpose of qualitative improvement of concrete, practical use and examination at various strengths. As a result, although the modulus of elasticity showed a tendency of getting decreased as the replacement ratio of recycled coarse aggregate has increased, the difference was insignificant while the compressive strength showed a tendency of about 3MPa increase in the recycled coarse aggregate replacement ratio of 30% compared to the ratio of 0%. In case of the dry shrinkage length variation ratio, the recycled coarse aggregate replacement ratio of 30% showed a tendency of about 20% shrinkage reduction compared to the ratio of 0%.

  • PDF

Dental Restorative Composite Resins Containing Asymmetric Spiro Orthocarbonate for the Reduction of Volumetric Shrinkage (비대칭 스파이로 오르토카보네이트가 포함된 저수축 치아 수복재)

  • 황미선;김창근
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.321-327
    • /
    • 2004
  • The applications of dental restorative composite resins containing 2,2-bis [4-(2-hydroxy-3-me-thacryloyloxy propoxy) phenyl] propane as a base resin, and triethylene glycol dimethacrylate, as a diluent, were often limited in dentistry due to the relatively large amount of volumetric shrinkage that occurs during the curing reaction. In this study, in order to reduce volumetric shrinkage of the current dental restorative composite resin, asymmetric spiro orthocarbonates were synthesized and then the characteristics of resin composites containing them were explored. The volumetric shrinkage of the dental composites containing spiro orthocarbonates was decreased approximately 45%. However, the curing characteristics and mechanical properties of the new dental composites were slightly poor than those of the commercially available dental composite.

The Effects PPF Fiber on Concrete Properties (PPF 섬유가 콘크리트의 물성에 미치는 영향)

  • 한만엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.150-155
    • /
    • 1993
  • The use of polypropylene fibers in concrete has been widely advertised by the fiber manufacturers. However, the behavior of concrete containing plastic fibers has not been fully understood. The effects of fiber on concrete have been forcused on shrinkage crack control mainly from field observation, and the mechanism and the side effect of fiber such as workability reduction have been neglicted. In this paper, the effect of fiber on workability and shrinkage properties have been studied. The addition of fiber significantly reduce workability and requires additional water to maintain the workability, which causes adversal effects on concrete properties.

  • PDF

Properties on the Shrinkage of High Performance Concrete Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 고성능 콘크리트의 수축특성)

  • Han, Cheon-Goo;Kim, Sung-Wook;Koh, Kyoung-Taek;Pei, Zheng-Lie
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.785-793
    • /
    • 2003
  • This study is intended to analyze the effectiveness of expansive additive, shrinkage reducing agent and combination of the two to reduce the autogenous and drying shrinkage of high performance concrete using mineral admixture such as fly ash, blast furnace slag powder and silica fume. According to results, when expansive additive and shrinkage reducing agent are mixed within an appropriate mixing ratio, fluidity and air content are not influenced, and the enhancement of compressive strength is favorable at the age of 91 and 180days. At the mixing ratio of expansive additive of 5% and 10%, the autogenous and drying shrinkage is reduced by 32∼68% and 25∼49% respectively in comparison with plain concrete. And they are reduced by 18∼34% and 16∼26% respectively at the mixing ratio of shrinkage reducing agent of 0.5% and 1.0%, compared with plain concrete. The mixture of EA-SR combined with expansive additive and shrinkage reducing agent is most effective for reduction of shrinkage. Therefore, it is considered that the using method in combination with expansive additive and shrinkage reducing agent is effective to reduce the shrinkage of high performance concrete using mineral admixture such as fly ash, blast slag powder and silica fume.

A study on the reduction of blow hole defects in aluminum sand casting (알루미늄 사형주조에서 기공 결함 감소를 위한 연구)

  • Lee, Dong-Youn;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.52-57
    • /
    • 2020
  • In this study attempted to prevent defects due to blow holes among defects of sand casting products. It was intended to reduce the defect rate by reducing the blow hole of the inner surface. Currently, expectations and requirements for the quality level of non-ferrous aluminum casting in the casting industry are increasing. In addition, the shape is complex and the shrinkage precision is required. Among them, the test prototype is expensive to manufacture the mold, and the production time is also long, and the product is manufactured by sand casting. At this time, the highest defect rates are defects caused by shrinkage defects, surface defects, and blow holes.. At this study, the manufacturing time was shortened by using the shape of the fluid movement path in advance. Also, it is possible to reduce defects due to blow holes.

An Experimental Study on Durability of Mortar and Concrete using Shrinkage reducing typed Superplasticizer (수축저감형 혼화제를 이용한 모르타르 및 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Woo, Hyung-Min;Park, Hee-Gon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.561-569
    • /
    • 2016
  • Concrete is cheap, easy to deal with, and the quality is satisfactory. Also, it is one of the easiest materials to get because chemical composition of cement is similar to chemical composition of surface. On the other hand, it is so vulnerable to transform because of weak binding capacity and low binding energy that it produces cracks. Cracks decline durability, usability, safety of structures and damage exterior. In order to decline drying shrinkage crack, this study used shrinkage reducing typed Superplasticizer, which is combination of and water-reducing agent for convenience, different with existing study using AE agent, water-reducing agent, shrinkage reducing agent,. Considering SRS field application possibility, this study planned to mix concrete and mortar generally used in ready-mixed concrete company and did basic experiment depending on a change of SRS content ratio and admixture. Based on the experiment result. It is judged that SRS admixture 2% is proper ratio when Given the intensity and length change. Also mass combination will conduct follow-up studies.

Technology on the Shrinkage Reduction of High Performance Concrete (고성능 콘크리트의 수축 저감 기술)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1101-1104
    • /
    • 2008
  • Recently, active researches are conducted on high performance concrete(HPC) exhibiting high strength and high fluidity. These researches are resulting in increased applications on real structures. In order to satisfy the required performances, HPC makes use of large quantities of binder and presents low water-cementitious material ratio. Such mixing is increasing significantly the autogenous shrinkage, which subsequently is likely to favor the potential development of cracks. Therefore, we investigated the effect of used materials and mix proportions on the shrinkage properties of HPC, and of the use of expansive additives and shrinkage reducing agents on the HPC. The autogenous shrinkage of HPC using blast furnace slag are tend to be increased, in some case have the potential development of cracks by only the autogenous shrinkage. Also the using method in combination with expansive additive and shrinkage reducing agent is more effective than the separately using method of that.

  • PDF