• Title/Summary/Keyword: shrinkage ratio

Search Result 598, Processing Time 0.028 seconds

Engineering Characteristics of Resource-Cycling Mortar according to the Variation of Illite Replacement Ratio and Fine Aggregate Type (굵은골재 및 잔골재 조합변화가 초고강도 콘크리트의 기초적 특성에 미치는 영향)

  • Lee, Sun-Jae;Song, Yuan-Lou;Yun, Jeong-Wan;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.61-62
    • /
    • 2015
  • This study has analyzed the engineering characteristics of resource-cycling mortar according to the variation of fine aggregate type using illite with high development potentials by setting the goal as developing eco-friendly construction materials. As a result, while flow has increased if recycled fine aggregate and waste refractory are used separately or mixing them adequately in case of flow and compressive strength, the flow had somewhat declined followed by illite replacement. However, the possibility of such usage is determined to be adequate if used by mixing illite, recycled fine aggregate and waste refractory properly due to the dry shrinkage effect.

  • PDF

Effect of Graphite Nanofibers on Poly(methyl methacrylate) Nanocomposites for Bipolar Plates

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.671-674
    • /
    • 2009
  • In this work, high-aspect-ratio graphite nanofibers (GNFs) were used to improve the electrical, thermal, and mechanical properties of the poly(methyl methacrylate) (PMMA) polymer, as well as those of PMMA composites suitable for use in bipolar plates. In the result, an electrical percolation threshold for the composites was formed between 1 and 2 wt% GNF content. This threshold was found to be influenced strongly by the three separate stages of the meltblending process. The composites exhibited higher thermal and mechanical properties and lower thermal shrinkage compared with the neat PMMA. Thus, GNFs were demonstrated to have positive impacts on the thermo-mechanical properties of PMMA composites and showed, thereby, reasonable potential for use in composites employed in the fabrication of bipolar plates.

The Influence of CuO on Bonding Behaviors of Low-Firing-Substrate and Cu Conductor (저온소성 기판과 Cu와의 동시소성에 미치는 CuO의 첨가효과)

  • 박정현;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.381-388
    • /
    • 1994
  • A new process which co-fires the low-firing-substrate and copper conductor was studied to achieve good bond strength and low sheet resistance of conductor. Cupric oxide is used as the precursor of conductive material in the new method and the firing atmosphere of the new process is changed sequently in air H2N2. The addition of cupric oxide and variations of firing atmosphere permited complete binder-burnout in comparison with the conventional method and contributed to the improvement of resistance and bonding behaviors. The potimum conditions of this experiment to obtain the satisfactory resistance and bond strength are as follows (binder-burnout temperature in air; 55$0^{\circ}C$, reducing temperature in H2; 40$0^{\circ}C$ for 30 min, ratio of copper and cupric oxide; 60:40~30:70 wt%). The bonding mechanism between the substrate and metal was explained by metal diffusion layer in the interface and the bond strength mainly depended on the stress caused by the difference of shrinkage and thermal expansion coefficient between the substrate and metal.

  • PDF

On simple estimation technique for the reliability of exponential lifetime model

  • Al-Hemyari, Z.A.;Al-Saidy, Obaid M.;Al-Ali, A.R.
    • International Journal of Reliability and Applications
    • /
    • v.14 no.2
    • /
    • pp.79-96
    • /
    • 2013
  • Exponential distribution plays a key role in engineering reliability and its applications. The exponential failure model has been studied for years. This article introduces two new preliminary test estimators for the reliability function (R(t)) in complete and censored samples from the exponential model with the use of a prior estimation (${\theta}_0$) of the mean (${\theta}$). The proposed preliminary test estimators are studied and compared numerically with the existing estimators. Computer-intensive calculations for bias and relative efficiency show that for, different values of levels of significance and for varying constants involved in the proposed estimators, the proposed estimators are far better than classical and existing estimators.

  • PDF

Verification of gate balancing equation using injection molding analysis (사출성형해석 연구를 이용한 게이트 밸런스 계산식의 검증)

  • Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In a multi-cavity mold having a runner layout of a fish bone structure, problems of unbalanced filling between cavities occur constantly. Unbalanced charging lowers the dimensional accuracy of a molded article and causes deformation after molding. To solve this problem, the gate size connected to each cavity is adjusted using the BGV (Balanced Gate Value) equation. In this paper, in order to solve the filling imbalance problem of the runner layout mold of fish bone structure through injection molding analysis study, we compared the charging imbalance phenomenon before and after improvement after adjusting the gate size by applying BGV equation. From the results of the molding analysis, the shrinkage ratio before and after the improvement of the molded article was improved by only about 0.08%. Based on these results, it was confirmed that the charging imbalance problem was not significantly improved even when the BGV equation was applied.

Mechanical Properties of Cement Paste with Nanomateirals (나노재료를 혼입한 시멘트 페이스트의 역학적 특성)

  • Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.193-194
    • /
    • 2020
  • Recently, as the use of high-performance concrete has become common, various problems related to high-performance concrete have become an issue. Among them, self-shrinkage of cement paste due to low water cement ratio is known to cause problems in the volume stability of concrete. To improve this, studies related to the mixing technology of cement-based materials and nano materials have been actively conducted. Looking at the results of prior research related to nano material mixing technology, generally, research results have been reported in which nano materials are incorporated into cement-based materials to improve material properties1). Among them, it was shown that the mechanical performance and various types of functionality of the cement composite are expressed. Among nano materials, carbon nanotubes (hereinafter referred to as CNTs) and graphenes are used in a mixture with cement-based materials. Accordingly, this study intends to compare the mechanical properties by incorporating various CNTs and graphene into cement paste.

  • PDF

Facile Fabrication of Micro-scale Photomask and Microfluidic Channel Mold for Sensor Applications Using a Heat-shrink Polymer

  • Sung-Youp Lee;Kiwon Yang;Jong-Goo Bhak;Young-Soo Sohn
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.280-284
    • /
    • 2023
  • In this study, a prototype micro-scale photomask and microfluidic channel mold were fabricated using the thermal shrinkage of the polymer. A polystyrene (PS) sheet was used as the heat-shrink polymer, and the patterns of the photomask and microchannel are interdigitated electrodes. Patterns were formed on the PS sheets using a commercial laser printer. The contraction ratio of the PS sheet was approximately 60% at a temperature of 150 ℃, and the transmittance was reduced by approximately 0% at a wavelength of 365 nm. The microfluidic channel had a round shape. The proposed technique is simple, facile, and inexpensive for fabricating a micro-scale photomask and microfluidic channel mold and does not involve the use of any harmful materials. Thus, this technique is well-suited for fabricating diverse micro-scale patterns and channels for prototype devices, including sensors.

Chemo-mechanical Analysis of Bifunctional Linear DGEBA/Linear Amine(EDA, HMDA) Resin Casting Systems (DGEBA/선형 아민(EDA, HMDA) 경화제의 주쇄 탄소숫자와 물성과의 관계에 대한 연구)

  • Myung, In-Ho;Chung, In-Jae;Lee, Jae-Rock
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.990-995
    • /
    • 1999
  • To determine the effect of chemical structure of linear amine curing agents on thermal and mechanical properties, standard epoxy resin DGEBA was cured with ethylene diamine(EDA) and hexamethylene diamine(HMDA) in a stoichiometrically equivalent ratio. From this work, the effect of linear amine curing agents on the thermal and mechanical properties is significantly influenced by the chemical structure or chain length of curing agents. In contrast, the results show that the DGEBA/EDA system having the two carbons had higher values in the thermal stability, maximum conversion of epoxide, density, glass transition temperature, tensile modulus, flexural strength, and flexural modulus than the DGEBA/HMDA system having the six carbons, whereas the DGEBA/EDA cure system had relatively low values in the shrinkage(%), thermal expansion coefficient, tensile strength, and had similar values in the maximum exothermic temperature, and conversion of epoxide compared to the DGEBA/HMDA cure system. This findings indicate that packing ability in the HMDA structure affects the thermal and mechanical properties.

  • PDF

The Fundamental Study of Strength and Drying Shrinkage on Alkali-activated Slag Cement Mortar with Different Entering Point of Fine Aggregate (잔골재의 투입시점에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축에 대한 기초적 연구)

  • Kim, Tae-Wan;Eom, Jang-Sub;Seo, Ki-Young;Park, Hyun-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 2014
  • This paper examines the fundamental properties of alkali-activated slag cement (AASC) activated by sodium hydroxide (NaOH). The water to binder (W/B) ratio was 0.4 and 0.5. And concentration of activator were 2M and 4M. Five mix design of each W/B ratios was considered. The N0 mixture was KS L 5109 method and N1~N4 were varied in different mixing time, mix step and entering points of fine aggregate. Test results clearly showed that the flow value, strength and drying shrinkage development of AASC were significantly dependent on the entering point of fine aggregate. The flow value tended to decreases with delaying entering point of fine aggregate. The compressive strength and flexural strength increases with delaying entering point. Moreover, the XRD analysis confirmed that there were sustain these results. The drying shrinkage increases with delaying entering point of fine aggregate. Futhermore, a modified mixing method incorporating all hereby experimentally derived parameters, is proposed to improvement the physical properties of AASC.

The Drying Characteristics of Cooked-Ginseng Root and Its Shrinkage during Dehydration (증자인삼(蒸煮人蔘)의 건조특성(乾燥特性)과 건조(乾燥)에 수반(隨伴)하는 삼근(蔘根)의 수축(收縮))

  • Chun, Jae-Kun;Park, Hoon;Suh, Chung-Sik
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.167-173
    • /
    • 1985
  • Hot air drying characteristics of six year old cooked ginseng root at temperature ranges of $55{\sim}75^{\circ}C$ under 1.8m/sec air velocity and shrinkages accompained were investigated. Drying time to reach equilibrium moisture content of the root takes from 20 to 30 hours, depending on the subjected drying temperatures and root sizes. Drying curve shows that it has two or three falling stages and drying constant are continuously changed. Higher drying constant was observed both at early and late stages of drying. Shrinkage ratio of length, diameters, surface area and volume of the root were 13.0, 39.8, 47.7 and 68.5%, respectively, after 40 hours dry at $55^{\circ}C$. The most of shrinkage was observed at early drying stage.

  • PDF