• 제목/요약/키워드: shrinkage limit

검색결과 45건 처리시간 0.029초

초 저수축 콘크리트의 수축특성에 관한 실험적 연구 (An Experimental Study on the Shrinkage Properties of Ultra-Low Shrinkage Concrete)

  • 서태석;김강민;이현승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.148-149
    • /
    • 2021
  • In Japan, ultra-low shrinkage concrete has been developed and commercialized to control drying shrinkage cracks to the limit. However, in the case of South Korea, the study on this technology has not yet been conducted in earnest. Therefore, the study was conducted for the development of ultra-low shrinkage concrete to control the drying shrinkage crack of concrete to the limit, and in this study, after determining the mixture of ultra-low shrinkage concrete, a wall type mock-up specimen was produced to observe the shrinkage behavior of ultra-low shrinkage concrete.

  • PDF

벽체 실물대부재실험을 통한 초 저수축 콘크리트의 균열제어 효과 분석 (Analysis of Crack Control Effect of Ultra-low Shrinkage Concrete through Wall Mock-up Test)

  • 서태석;이현승;김강민
    • 한국건축시공학회지
    • /
    • 제22권1호
    • /
    • pp.45-55
    • /
    • 2022
  • 초 저수축 콘크리트는 콘크리트 구조물의 건조수축 균열을 극한으로 제어할 수 있기 때문에 콘크리트 구조물의 품질 및 외관 확보에 매우 효과적이다. 본 연구에서는 초 저수축 콘크리트의 상용화를 목적으로 실내실험을 통해 최적의 팽창재 및 수축저감제 투입량을 정하였고, 콘크리트 벽체 실물대부재실험을 실시하여 초 저수축 콘크리트의 수축 특성 및 균열제어 효과 등을 검토하였다. 그 결과 벽체 시험체에는 건조수축 변형이 거의 발생하지 않았고 균열도 발생하지 않음을 확인할 수 있었다.

성형직후 증발작용을 받은 콘크리트의 강도에 대한 연구 (A Study on Compressive Strength of Concrete Exposed to Evaporation Immediately After Casting)

  • 오무영
    • 한국농공학회지
    • /
    • 제16권4호
    • /
    • pp.3545-3554
    • /
    • 1974
  • The objective of this study was to investigate the characteristics of the evaporation rate, the plastic shrinkage and the compressive strength of concrete exposed to a rapid evaporation environment immediately after casting. Drying of concrete were conducted under a controlled chamber in which the temperature was mainfoimed at 30 ${\pm}$1$^{\circ}C$, the relative humidity 22 ${\pm}$1 percent, and the wind velocity 7 ${\pm}$1 m/sec. The compressive strength of concrete was tested after 28 days of standard curing. The results obtained are as follows: 1. The evaporation rate was the highest at the very beginning, was decreased as the drying progresses, and was kept almost constant after 6 hours. 2. The shrinkage of concrete was changed in three different rates for the concrete mixture having its slump vallue between 3.0cm and 7.5cm. 3. The plastic shrinkage was ended within 5 or 6 hours after casting, regardless of the water cement ratio. 4. The shrinkage was increased within the limit of slump values between 3.0cm and 7.5cm as the water-cement ratio was increased. 5. The evaporation was kept on even after the plastic shrinkage was ended. 6. Within the limit of good workability (slump value between 4.5cm and 7.5cm), the compressive strength of concrete was increased when the shrinkage rate was slow but it was decreased when the rate was rapid 7. From the result of this study it is recommended that (1) the water-cement ratio should be less as long as the workability of concrete is allowable; (2) the evaporation should be prevented at least for 4 hours after casting concrete.

  • PDF

회귀분석을 이용한 사출금형 설계 최적화 (Injection mold Design Optimization using Regression Analysis)

  • 류미라;김영희;이상재;이권희;박흥식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.657-660
    • /
    • 2005
  • It is net easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by suing the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum average shrinkage by regression analysis. The results shown that coefficient of determination of regression equation has a fine reliability over 88.3% and regression equation of average shrinkage is made by regression analysis.

  • PDF

Numerical modeling of drying shrinkage behavior of self-compacting concrete

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제5권5호
    • /
    • pp.435-448
    • /
    • 2008
  • Self-compacting concrete (SCC), characterized by the high flowability and resistance to segregation, is due to the high amount of paste (including cement and mineral admixtures) in contrast with normal concrete (NC). However, the high amount of paste will limit the volume fractions of coarse aggregate,and reduce the tendency of coarse aggregate to suppress drying shrinkage deformations. For this reason, SCC tends to produce higher values of drying shrinkage than NC for the most part. In order to assess the drying shrinkage of SCC quantitatively for application to offshore caisson foundations, the formulas presented in the literatures (ACI 209 and CEB-FIP) are used to predict the values of drying shrinkage in SCC according to the corresponding mix proportions. Additionally, a finite element (FE) model, which assumes concrete to be a homogeneous and isotropic material and follows the actual size and environmental conditions of the caisson, is utilized to simulate stress distribution situations and deformations in the SCC caisson resulting from the drying shrinkage. The probability of cracking and the behavior of drying shrinkage of the SCC caisson are drawn from the analytic results calculated by the FE model proposed in this paper.

회귀분석법을 이용한 사출금형의 수축률 분석에 관한 연구 (A Study Shrinkage Analysis of Injection mold using Regression Analysis)

  • 류미라;배희은;박정호;박종상;박성호;이대희;이성범
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.113-118
    • /
    • 2011
  • It is not easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by using the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum average shrinkage by regression analysis. The results shown that coefficient of determination of regression equation has a fine reliability over 87% and regression equation of average shrinkage is made by regression analysis.

크리깅을 이용한 전자 오븐 윈도우 부품용 사출금형의 최적설계 (Optimization of an Electron Microwave Oven Window Injection Mold Using Kriging Based Approximation Model)

  • 류미라;이권희;김영희;박흥식
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.177-184
    • /
    • 2005
  • Recently, the engineering designer of injection mould has become more and more dependent on the CAE. In the design factors of injection mould, the shrinkage rate should be considered as one of the important performances to produce the reliable products. therefore the shrinkage rate can be mostly calculated by the MoldFlow and Pro-engineering. in the design process. However it is not easy to predict the shrinkage rate of a plastic injection mold in its design process because the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models, DACE model, based on the Kriging in order to optimize the shrinkage rate of electric microwave oven window is used in lieu of the original models, facilitating design optimization.

수축저감제를 사용한 콘크리트의 건조수축 예측에 관한 연구 (Study on Prediction of Drying Shrinkage of Concrete using Shrinkage Reducing Agent)

  • 서태석;최훈제
    • 한국건축시공학회지
    • /
    • 제16권4호
    • /
    • pp.297-303
    • /
    • 2016
  • 콘크리트 건조수축 균열을 제어하기 위하여 수축저감제(SRA)가 개발되었다. SRA는 콘크리트 미세공극의 표면장력을 작게 하여 수축량을 감소시키며, 콘크리트의 품질향상을 위하여 SRA의 사용이 증가되고 있다. 하지만 건조수축을 예측하기 위한 다양한 모델이 존재함에도 불구하고, SRA의 영향을 고려할 수 있는 예측방법이 아직까지 없는 실정이다. 따라서 SRA 콘크리트의 건조수축에 의해 발생하는 인장응력을 정확히 예측할 수 없고, 콘크리트 구조물의 정량적인 사용성 한계의 검토가 불가능하다. 본 연구에서는 SRA 콘크리트의 정량적인 건조수축 변형률 예측가능성을 제시하기 위하여, 건조수축실험값과 기존 모델에 의한 예측값을 비교하였다. 기존 모델에는 SRA의 영향을 고려할 수 없으므로, 실험결과에 근거하여 SRA 첨가율에 따른 수축저감계수를 도출하였고 기존 모델에 수축저감계수를 적용하여 예측값을 구하였다. 그 결과 AIJ 모델, ACI 모델, GL2000 모델은 ${\pm}10%$의 오차범위 내에서 예측값과 실측값이 전반적으로 양호한 상관관계를 보였지만, CEB-FIP 모델과 B3 모델은 예측값이 실측값을 과소평가 하는 것으로 나타났다.

하수준설토의 체적변화에 관한 연구 (A Study on the Volumetric Change of Sewage Dredged Soils)

  • 이송;이무철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1167-1174
    • /
    • 2005
  • This paper describes on the volume change of Sewage Dredged Soils by using laboratory test and volumetric change test. The tremendous change of Moisture Content occured in the Sewage Dredged Soils during the Elapsed Time. The Unit Weight increases during the normally shrinkage limit void ratio and then the unit weight decrease. A volume of Sewage Dredged Soils according to the moisture content is a difference maximum 2.5 times. And there is the difference 3.5 times according to the change of unit weight. Therefore, the moisture content and unit weight computation are very important for the computation on the volume of Sewage Drdeged Soils.

  • PDF

Investigation of Likelihood of Cracking in Reinforced Concrete Bridge Decks

  • ElSafty, Adel;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권1호
    • /
    • pp.79-93
    • /
    • 2013
  • One of the biggest problems affecting bridges is the transverse cracking and deterioration of concrete bridge decks. The causes of early age cracking are primarily attributed to plastic shrinkage, temperature effects, autogenous shrinkage, and drying shrinkage. The cracks can be influenced by material characteristics, casting sequence, formwork, climate conditions, geometry, and time dependent factors. The cracking of bridge decks not only creates unsightly aesthetic condition but also greatly reduces durability. It leads to a loss of functionality, loss of stiffness, and ultimately loss of structural safety. This investigation consists of field, laboratory, and analytical phases. The experimental and field testing investigate the early age transverse cracking of bridge decks and evaluate the use of sealant materials. The research identifies suitable materials, for crack sealing, with an ability to span cracks of various widths and to achieve performance criteria such as penetration depth, bond strength, and elongation. This paper also analytically examines the effect of a wide range of parameters on the development of cracking such as the number of spans, the span length, girder spacing, deck thickness, concrete compressive strength, dead load, hydration, temperature, shrinkage, and creep. The importance of each parameter is identified and then evaluated. Also, the AASHTO Standard Specification limits liveload deflections to L/800 for ordinary bridges and L/1000 for bridges in urban areas that are subject to pedestrian use. The deflection is found to be an important parameter to affect cracking. A set of recommendations to limit the transverse deck cracks in bridge decks is also presented.