• Title/Summary/Keyword: shredding/separation process

Search Result 4, Processing Time 0.018 seconds

Mechanism of Cryogenic Shredding Process of Scrap Tire

  • Taipau Chia;Shanshin Ton;Shu, Hung-Yee;Chien, Yeh-chung;Lee, Ming-Huang
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.225-229
    • /
    • 2001
  • There are about 41% (by weight) of scrap tires were pulverized to produce rubber powder and granules in the tire recycling industry of Taiwan. However, the reuse of the by-products, steel and fiber, of the scrap tires still needs to be improved. It is difficult to remove the remaining rubber on the surface of steel or fiber. This problem reduce the availability for further reuse of steel and fiber. In addition to the improvement of magnetic, gravity separation techniques or carbonization process, using cryogenic shredding process to separate rubber and fiber (or steel) had been used as another alternative. Cryogenic shredding process for scrap tires showed many advantages, the objective of this paper is to explore the mechanisms for the cryogenic shredding process of scrap tires. Cryo-SEM is used to investigate the topographic information, in-situ, from room temperature to -195$^{\circ}C$ . One square inch shredded tire chips are prepared for SEM study. The percentage of the shrinkage of rubber is also estimated, ca. 6.7%. Mechanisms of cryogenic shredding effects on the tire chips are discussed. The proper practice of cryogenic shredding process far scrap tires is also suggested.

  • PDF

Analysis and Separation of Constituent Materials of Old Car by Shredding Process (폐자동차 파쇄를 통한 주요구성물질의 분리 및 분석평가)

  • Lee Hwa-Young;Oh Jong-Kee;Kim Sung-Gyu
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.11-16
    • /
    • 2002
  • Analysis and separation of constituent materials of old car have been performed by using the industrial shredding line. For this aim, three old cars made by domestic automobile manufacturers, Sonata II, Sephia and Prince were chosen and delivered in pressed form without engine, tires and doors, etc. Shredding line was substantially composed of pre- and main-shredder. cyclone, magnetic separation, eddy current separation and man-power separation. From the separation of shredder products, iron scrap was observed to be the major material of old car accounting for 60.1 % of total weight and non-ferrous metals involving Al, Cu and Zn, etc. were about 2%. Light fluff, about 90% of total fluff product, was comprised with plastic, fiber and sponge, etc. and the fraction of 5 cm undersize in light fluff was 70.5%. In case of heavy fluff, however. rubber and plastic were found to be the major constituent materials of it. Among the constituent materials of fluff, plastic showed the highest calorific value, more than 10,000 cal/gr and leather and rubber showed relatively high chlorine content, 10.3 and 2.55 wt%, respectively.

Current Status of Tire Recycling in Taiwan

  • Shanshin Ton;Taipau Chia;Lee, Ming-Huang;Chien, Yeh-Chung;Shu, Hung-Yee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.230-235
    • /
    • 2001
  • There are more than 15 millions cars or motors in Taiwan. According to the statistics from Environmental Protection Administration, the number of resulting scrap tires are near 110 thousand tons each year. The tire recycle programs in Taiwan were first conducted in 1989 and executed by ROC Scrap Tire Foundation. However, the current efficiency of the tire recycling industry still needs to be improved to minimize the environmental problem or fire hazards caused by scrap tires storage. Ten major tire-recycling factories are surveyed in this study. The investigations include the source of scrap tire, the shredding process, the market of products, the management of wastes disposal, and the difficulties of these sectors. As the varieties of the shredding machines of the recycle factories, there are three kinds of final products which include powder, granular, and chips. The wastes, wires and fibers, produced by the shredding process are the major problems fur all the factories. The percentage of the wire and fiber removal from rubbers still needs to be increased. The best approaches found in this study to increase the efficiency of scrap tire recycling processes are proposed which include the improvement of magnetic separation system fiber/rubber separation system and the minimization of waste disposal. A categorized standard of the processing outputs is suggested as a reference for the decision-making of the tire-recycling factories.

  • PDF

Overview and Recent Development of Recycling Waste Refrigerators (폐(廢) 냉장고(冷藏庫) 재활용(再活用) 현황(現況)과 기술(技術) 전망(展望))

  • Yang, Hyunseok;Kim, Geon-Hong;Kong, Man-Sik;Park, Kiejin;Lee, Gwang Weon;Kim, Bo Saeng
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.70-80
    • /
    • 2013
  • Waste refrigerator is the most large amount of item being recycled and the recycling process is the most complicated in WEEE (Waste Electrical and Electronic Equipment) because refrigerator is biggest product and consists of various parts and materials such as ferrous, non-ferrous, and plastics. Recently, recycling process of waste refrigerator has been being more complex since large capacity 2 door refrigerators and standing Kimchi refrigerators with various material are distributed on custom market. In addition, recycling of valuable resource from waste refrigerator is mandatory by WEEEs recycling legislation; therefore, high efficiency recycling enough for economic and environment-friendly recovery of valuable resource through present technical situation analysis and comparison of recycling technologies of waste refrigerator with advanced country.