• Title/Summary/Keyword: shot-based keyframe selection

Search Result 2, Processing Time 0.016 seconds

Improved Quality Keyframe Selection Method for HD Video

  • Yang, Hyeon Seok;Lee, Jong Min;Jeong, Woojin;Kim, Seung-Hee;Kim, Sun-Joong;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3074-3091
    • /
    • 2019
  • With the widespread use of the Internet, services for providing large-capacity multimedia data such as video-on-demand (VOD) services and video uploading sites have greatly increased. VOD service providers want to be able to provide users with high-quality keyframes of high quality videos within a few minutes after the broadcast ends. However, existing keyframe extraction tends to select keyframes whose quality as a keyframe is insufficiently considered, and it takes a long computation time because it does not consider an HD class image. In this paper, we propose a keyframe selection method that flexibly applies multiple keyframe quality metrics and improves the computation time. The main procedure is as follows. After shot boundary detection is performed, the first frames are extracted as initial keyframes. The user sets evaluation metrics and priorities by considering the genre and attributes of the video. According to the evaluation metrics and the priority, the low-quality keyframe is selected as a replacement target. The replacement target keyframe is replaced with a high-quality frame in the shot. The proposed method was subjectively evaluated by 23 votes. Approximately 45% of the replaced keyframes were improved and about 18% of the replaced keyframes were adversely affected. Also, it took about 10 minutes to complete the summary of one hour video, which resulted in a reduction of more than 44.5% of the execution time.

Hierarchical Keyframe Selection from Video Shots using Region, Motion and Fuzzy Set Theory (비디오 셧으로부터 영역, 모션 및 퍼지 이론을 이용한 계층적 대표 프레임 선택)

  • Kang, Hang-Bong
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.510-520
    • /
    • 2000
  • For content-based video indexing and retrieval, it is necessary to segment video data into video shots and then select key frames or representative frames for each shot. However, it is very difficult to select key frames automatically because the task of selecting meaningful frames is quite subjective. In this paper, we propose a new approach in selecting key frames based on visual contents such as region information and their temporal variations in the shot. First of all, we classify video shots into panning shots, zooming shots, tilting shots or no camera motion shots by detecting camera motion information in video shots. Then, in each category, we apply appropriate fuzzy rules to select key frames based on meaningful content in frame. Finally, we control the number of key frames in the selection process by adjusting the degree of detail in representing video shots.

  • PDF