• Title/Summary/Keyword: shot transition detection

Search Result 13, Processing Time 0.022 seconds

Content based Video Segmentation Algorithm using Comparison of Pattern Similarity (장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘)

  • Won, In-Su;Cho, Ju-Hee;Na, Sang-Il;Jin, Ju-Kyong;Jeong, Jae-Hyup;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1252-1261
    • /
    • 2011
  • In this paper, we propose the comparison method of pattern similarity for video segmentation algorithm. The shot boundary type is categorized as 2 types, abrupt change and gradual change. The representative examples of gradual change are dissolve, fade-in, fade-out or wipe transition. The proposed method consider the problem to detect shot boundary as 2-class problem. We concentrated if the shot boundary event happens or not. It is essential to define similarity between frames for shot boundary detection. We proposed 2 similarity measures, within similarity and between similarity. The within similarity is defined by feature comparison between frames belong to same shot. The between similarity is defined by feature comparison between frames belong to different scene. Finally we calculated the statistical patterns comparison between the within similarity and between similarity. Because this measure is robust to flash light or object movement, our proposed algorithm make contribution towards reducing false positive rate. We employed color histogram and mean of sub-block on frame image as frame feature. We performed the experimental evaluation with video dataset including set of TREC-2001 and TREC-2002. The proposed algorithm shows the performance, 91.84% recall and 86.43% precision in experimental circumstance.

Cut and Fade Detection of Scene Change Using Wavelet transform (웨이블렛 변환을 적용한 장면전환의 cut과 fade검출)

  • 이명은;박종현;박순영;방만원;조완현
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.207-210
    • /
    • 2000
  • 본 논문에서는 신호를 해석하는데 유용한 웨이블렛 변환을 적용하여 장면전환 요소 중 cut과 fade를 검출하는 알고리즘을 제안한다. 제안된 방법은 웨이블렛 저대역 부밴드로부터 각 프레임의 히스토그램을 구한 후 이전 프레임과 현재 프레임사이의 히스토그램 차를 구하여 이 값이 임계값 이상이면 급격한 장면전환(abrut shot transition)인 cut으로 분류한다. 다음으로 페이드인(fade in)이나 페이드 아웃(fade out)등 컷의 지점이 불분명한 점진적 장면전환(gradual scene transition)을 검출하기 위하여 고대역 부밴드에서 추출한 에지성분에 모멘트를 계산하여 인접한 프레임 사이의 변동율을 분석하여 값이 증가하면 페이드 인을 검출하고 반면에 감소하면 페이드 아웃을 검출하게된다. 성능평가를 위하여 실제의 비디오 분할에 적용한 결과 웨이블렛 적용 방법론이 매우 높은 Precision을 갖는다는 것을 알 수 있으며 윤곽정보에 모멘트 정보를 더함으로써 기존의 방법보다 정확한 페이드(fade) 구간을 검출할 수 있었다.

  • PDF

Auto Frame Extraction Method for Video Cartooning System (동영상 카투닝 시스템을 위한 자동 프레임 추출 기법)

  • Kim, Dae-Jin;Koo, Ddeo-Ol-Ra
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.28-39
    • /
    • 2011
  • While the broadband multimedia technologies have been developing, the commercial market of digital contents has also been widely spreading. Most of all, digital cartoon market like internet cartoon has been rapidly large so video cartooning continuously has been researched because of lack and variety of cartoon. Until now, video cartooning system has been focused in non-photorealistic rendering and word balloon. But the meaningful frame extraction must take priority for cartooning system when applying in service. In this paper, we propose new automatic frame extraction method for video cartooning system. At frist, we separate video and audio from movie and extract features parameter like MFCC and ZCR from audio data. Audio signal is classified to speech, music and speech+music comparing with already trained audio data using GMM distributor. So we can set speech area. In the video case, we extract frame using general scene change detection method like histogram method and extract meaningful frames in the cartoon using face detection among the already extracted frames. After that, first of all existent face within speech area image transition frame extract automatically. Suitable frame about movie cartooning automatically extract that extraction image transition frame at continuable period of time domain.