• Title/Summary/Keyword: shot segmentation

Search Result 38, Processing Time 0.028 seconds

Few-shot Aerial Image Segmentation with Mask-Guided Attention (마스크-보조 어텐션 기법을 활용한 항공 영상에서의 퓨-샷 의미론적 분할)

  • Kwon, Hyeongjun;Song, Taeyong;Lee, Tae-Young;Ahn, Jongsik;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.685-694
    • /
    • 2022
  • The goal of few-shot semantic segmentation is to build a network that quickly adapts to novel classes with extreme data shortage regimes. Most existing few-shot segmentation methods leverage single or multiple prototypes from extracted support features. Although there have been promising results for natural images, these methods are not directly applicable to the aerial image domain. A key factor in few-shot segmentation on aerial images is to effectively exploit information that is robust against extreme changes in background and object scales. In this paper, we propose a Mask-Guided Attention module to extract more comprehensive support features for few-shot segmentation in aerial images. Taking advantage of the support ground-truth masks, the area correlated to the foreground object is highlighted and enables the support encoder to extract comprehensive support features with contextual information. To facilitate reproducible studies of the task of few-shot semantic segmentation in aerial images, we further present the few-shot segmentation benchmark iSAID-, which is constructed from a large-scale iSAID dataset. Extensive experimental results including comparisons with the state-of-the-art methods and ablation studies demonstrate the effectiveness of the proposed method.

Video Scene Segmentation Technique based on Color and Motion Features (칼라 및 모션 특징 기반 비디오 씬 분할 기법)

  • 송창준;고한석;권용무
    • Journal of Broadcast Engineering
    • /
    • v.5 no.1
    • /
    • pp.102-112
    • /
    • 2000
  • The previous video structuring techniques are mainly limited to shot or shot group level. However, the shot level structure couldn't provide semantics within a video. So, researches on high level structuring are going on for getting over the drawbacks of shot level structure, recently. To overcome the drawbacks of shot level structure, we propose video scene segmentation technique based on color and motion features. For considering various color distribution, each shot is divided into sub-shots based on color feature. A key frame is extracted from each sub-shot. The motion feature in a shot is extracted from MPEG-1 video's motion vector. Moreover adaptive weights based on motion's property in search range are applied to color and motion features. The experiment results of proposed technique show the excellence in view of the over-segmentation and the reflection of semantics, comparing with those of previous techniques. The proposed technique decomposes video into meaningful hierarchical structure and provides video browsing or retrieval based on scene.

  • PDF

CUDA based parallel design of a shot change detection algorithm using frame segmentation and object movement

  • Kim, Seung-Hyun;Lee, Joon-Goo;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.9-16
    • /
    • 2015
  • This paper proposes the parallel design of a shot change detection algorithm using frame segmentation and moving blocks. In the proposed approach, the high parallel processing components, such as frame histogram calculation, block histogram calculation, Otsu threshold setting function, frame moving operation, and block histogram comparison, are designed in parallel for NVIDIA GPU. In order to minimize memory access delay time and guarantee fast computation, the output of a GPU kernel becomes the input data of another kernel in a pipeline way using the shared memory of GPU. In addition, the optimal sizes of CUDA processing blocks and threads are estimated through the prior experiments. In the experimental test of the proposed shot change detection algorithm, the detection rate of the GPU based parallel algorithm is the same as that of the CPU based algorithm, but the average of processing time speeds up about 6~8 times.

Background memory-assisted zero-shot video object segmentation for unmanned aerial and ground vehicles

  • Kimin Yun;Hyung-Il Kim;Kangmin Bae;Jinyoung Moon
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.795-810
    • /
    • 2023
  • Unmanned aerial vehicles (UAV) and ground vehicles (UGV) require advanced video analytics for various tasks, such as moving object detection and segmentation; this has led to increasing demands for these methods. We propose a zero-shot video object segmentation method specifically designed for UAV and UGV applications that focuses on the discovery of moving objects in challenging scenarios. This method employs a background memory model that enables training from sparse annotations along the time axis, utilizing temporal modeling of the background to detect moving objects effectively. The proposed method addresses the limitations of the existing state-of-the-art methods for detecting salient objects within images, regardless of their movements. In particular, our method achieved mean J and F values of 82.7 and 81.2 on the DAVIS'16, respectively. We also conducted extensive ablation studies that highlighted the contributions of various input compositions and combinations of datasets used for training. In future developments, we will integrate the proposed method with additional systems, such as tracking and obstacle avoidance functionalities.

A shot change detection algorithm based on frame segmentation and object movement (프레임 블록화와 객체의 이동을 이용한 샷 전환 탐지 알고리즘)

  • Kim, Seung-Hyun;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a shot change detection algorithm by using frame segmentation and the object changes among moving blocks. In order to detect the rapid moving changes of objects between two consecutive frames, the moving blocks on the diagonal are defined, and their histograms are calculated. When a block of the current frame is compared to the moving blocks of the next frame, the block histograms are used and the threshold of a shot change detection is automatically adjusted by Otsu's threshold method. The proposed algorithm was tested for the various types of color or gray videos such as films, dramas, animations, and video tapes in National Archives of Korea. The experimental results showed that the proposed algorithm could enhance the detection rate when compared to the studied methods that use brightness, histogram, or segmentation.

Video Mosaic System by Multi-Image (다중 영상에 의한 비디오 모자이크 시스템)

  • 양원보;임문순;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.104-108
    • /
    • 1999
  • It is presented many effect that represented by implicated one image more than each images with a fragment meaning. ‘Mosaic’ is technique be applied at this situation. ‘Mosaic’ is created by complicated one new image which by multi image be eliminated overlap region. This research is development for mosaic system by multi image. The system is divided that shot segmentation and mosaic image creation. Shot segmentation divided that merge with respect to similarity images which video data of moving picture in sequence time and mosaic image creation is composed of one image with which all frames in segmented shot.

  • PDF

MPEG Video Segmentation Using Frame Feature Comparison (프레임 특징 비교를 이용한 압축비디오 분할)

  • 김영호;강대성
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2003
  • Recently, development of digital technology is occupying a large part of multimedia information like character, voice, image, video, etc. Research about video indexing and retrieval progresses especially in research relative to video. In this paper, we propose new algorithm(Frame Feature Comparison) for MPEG video segmentation. Shot, Scene Change detection is basic and important works that segment it in MPEG video sequence. Generally, the segmentation algorithm that uses much has defect that occurs an error detection according to a flash of camera, movement of camera and fast movement of an object, because of comparing former frames with present frames. Therefore, we distinguish a scene change one more time using a scene change point detected in the conventional algorithm through comparing its mean value with abutted frames. In the result, we could detect more corrective scene change than the conventional algorithm.

  • PDF

The Shot Change Detection Using a Hybrid Clustering (하이브리드 클러스터링을 이용한 샷 전환 검출)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Lee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.635-638
    • /
    • 2005
  • The purpose of video segmentation is to segment video sequence into shots where each shot represents a sequence of frames having the same contents, and then select key frames from each shot for indexing. There are two types of shot changes, abrupt and gradual. The major problem of shot change detection lies on the difficulty of specifying the correct threshold, which determines the performance of shot change detection. As to the clustering approach, the right number of clusters is hard to be found. Different clustering may lead to completely different results. In this thesis, we propose a video segmentation method using a color-X$^2$ intensity histogram-based fuzzy c-means clustering algorithm.

  • PDF

MPEG Video Segmentation using Two-stage Neural Networks and Hierarchical Frame Search (2단계 신경망과 계층적 프레임 탐색 방법을 이용한 MPEG 비디오 분할)

  • Kim, Joo-Min;Choi, Yeong-Woo;Chung, Ku-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.114-125
    • /
    • 2002
  • In this paper, we are proposing a hierarchical segmentation method that first segments the video data into units of shots by detecting cut and dissolve, and then decides types of camera operations or object movements in each shot. In our previous work[1], each picture group is divided into one of the three detailed categories, Shot(in case of scene change), Move(in case of camera operation or object movement) and Static(in case of almost no change between images), by analysing DC(Direct Current) component of I(Intra) frame. In this process, we have designed two-stage hierarchical neural network with inputs of various multiple features combined. Then, the system detects the accurate shot position, types of camera operations or object movements by searching P(Predicted), B(Bi-directional) frames of the current picture group selectively and hierarchically. Also, the statistical distributions of macro block types in P or B frames are used for the accurate detection of cut position, and another neural network with inputs of macro block types and motion vectors method can reduce the processing time by using only DC coefficients of I frames without decoding and by searching P, B frames selectively and hierarchically. The proposed method classified the picture groups in the accuracy of 93.9-100.0% and the cuts in the accuracy of 96.1-100.0% with three different together is used to detect dissolve, types of camera operations and object movements. The proposed types of video data. Also, it classified the types of camera movements or object movements in the accuracy of 90.13% and 89.28% with two different types of video data.

Segmentation of Objects of Interest for Video Content Analysis (동영상 내용 분석을 위한 관심 객체 추출)

  • Park, So-Jung;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.967-980
    • /
    • 2007
  • Video objects of interest play an important role in representing the video content and are useful for improving the performance of video retrieval and compression. The objects of interest may be a main object in describing contents of a video shot or a core object that a video producer wants to represent in the video shot. We know that any object attracting one's eye much in the video shot may not be an object of interest and a non-moving object may be an object of interest as well as a moving one. However it is not easy to define an object of interest clearly, because procedural description of human interest is difficult. In this paper, a set of four filtering conditions for extracting moving objects of interest is suggested, which is defined by considering variation of location, size, and moving pattern of moving objects in a video shot. Non-moving objects of interest are also defined as another set of four extracting conditions that are related to saliency of color/texture, location, size, and occurrence frequency of static objects in a video shot. On a test with 50 video shots, the segmentation method based on the two sets of conditions could extract the moving and non-moving objects of interest chosen manually on accuracy of 84%.

  • PDF