• Title/Summary/Keyword: short term neural network

Search Result 394, Processing Time 0.027 seconds

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF

Development of Rainfall Forecastion Model Using a Neural Network (신경망이론을 이용한 강우예측모형의 개발)

  • 오남선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.253-256
    • /
    • 1996
  • Rainfall is one of the major and complicated elements of hydrologic system. Accurate prediction of rainfall is very important to mitigate storm damage. The neural network is a good model to be applied for the classification problem, large combinatorial optimization and nonlinear mapping. In this dissertation, rainfall predictions by the neural network theory were presented. A multi-layer neural network was constructed. The network learned continuous-valued input and output data. The network was used to predict rainfall. The online, multivariate, short term rainfall prediction is possible by means of the developed model. A multidimensional rainfall generation model is applied to Seoul metropolitan area in order to generate the 10-minute rainfall. Application of neural network to the generated rainfall shows good prediction. Also application of neural network to 1-hour real data in Seoul metropolitan area shows slightly good predictions.

  • PDF

Deep Learning Based Rumor Detection for Arabic Micro-Text

  • Alharbi, Shada;Alyoubi, Khaled;Alotaibi, Fahd
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.73-80
    • /
    • 2021
  • Nowadays microblogs have become the most popular platforms to obtain and spread information. Twitter is one of the most used platforms to share everyday life event. However, rumors and misinformation on Arabic social media platforms has become pervasive which can create inestimable harm to society. Therefore, it is imperative to tackle and study this issue to distinguish the verified information from the unverified ones. There is an increasing interest in rumor detection on microblogs recently, however, it is mostly applied on English language while the work on Arabic language is still ongoing research topic and need more efforts. In this paper, we propose a combined Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to detect rumors on Twitter dataset. Various experiments were conducted to choose the best hyper-parameters tuning to achieve the best results. Moreover, different neural network models are used to evaluate performance and compare results. Experiments show that the CNN-LSTM model achieved the best accuracy 0.95 and an F1-score of 0.94 which outperform the state-of-the-art methods.

Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction (현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

Short-Term Load Forecasting Using Neural Networks and the Sensitivity of Temperatures in the Summer Season (신경회로망과 하절기 온도 민감도를 이용한 단기 전력 수요 예측)

  • Ha Seong-Kwan;Kim Hongrae;Song Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.259-266
    • /
    • 2005
  • Short-term load forecasting algorithm using neural networks and the sensitivity of temperatures in the summer season is proposed. In recent 10 years, many researchers have focused on artificial neural network approach for the load forecasting. In order to improve the accuracy of the load forecasting, input parameters of neural networks are investigated for three training cases of previous 7-days, 14-days, and 30-days. As the result of the investigation, the training case of previous 7-days is selected in the proposed algorithm. Test results show that the proposed algorithm improves the accuracy of the load forecasting.

Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model (개선된 유전자 역전파 신경망에 기반한 예측 알고리즘)

  • Yoon, YeoChang;Jo, Na Rae;Lee, Sung Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1327-1336
    • /
    • 2017
  • In this study, the problems in the short term stock market forecasting are analyzed and the feasibility of the ARIMA method and the backpropagation neural network is discussed. Neural network and genetic algorithm in short term stock forecasting is also examined. Since the backpropagation algorithm often falls into the local minima trap, we optimized the backpropagation neural network and established a genetic algorithm based on backpropagation neural network for forecasting model in order to achieve high forecasting accuracy. The experiments adopted the korea composite stock price index series to make prediction and provided corresponding error analysis. The results show that the genetic algorithm based on backpropagation neural network model proposed in this study has a significant improvement in stock price index series forecasting accuracy.

A study on recognition improvement of velopharyngeal insufficiency patient's speech using various types of deep neural network (심층신경망 구조에 따른 구개인두부전증 환자 음성 인식 향상 연구)

  • Kim, Min-seok;Jung, Jae-hee;Jung, Bo-kyung;Yoon, Ki-mu;Bae, Ara;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.703-709
    • /
    • 2019
  • This paper proposes speech recognition systems employing Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) structures combined with Hidden Markov Moldel (HMM) to effectively recognize the speech of VeloPharyngeal Insufficiency (VPI) patients, and compares the recognition performance of the systems to the Gaussian Mixture Model (GMM-HMM) and fully-connected Deep Neural Network (DNNHMM) based speech recognition systems. In this paper, the initial model is trained using normal speakers' speech and simulated VPI speech is used for generating a prior model for speaker adaptation. For VPI speaker adaptation, selected layers are trained in the CNN-HMM based model, and dropout regulatory technique is applied in the LSTM-HMM based model, showing 3.68 % improvement in recognition accuracy. The experimental results demonstrate that the proposed LSTM-HMM-based speech recognition system is effective for VPI speech with small-sized speech data, compared to conventional GMM-HMM and fully-connected DNN-HMM system.

Study on the Modelling of Algal Dynamics in Lake Paldang Using Artificial Neural Networks (인공신경망을 이용한 팔당호의 조류발생 모델 연구)

  • Park, Hae-Kyung;Kim, Eun-Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • Artificial neural networks were used for time series modelling of algal dynamics of whole year and by season at the Paldang dam station (confluence area). The modelling was based on comprehensive weekly water quality data from 1997 to 2004 at the Paldang dam station. The results of validation of seasonal models showed that the timing and magnitude of the observed chlorophyll a concentration was predicted better, compared with the ANN model for whole year. Internal weightings of the inputs in trained neural networks were obtained by sensitivity analysis for identification of the primary driving mechanisms in the system dynamics. pH, COD, TP determined most the dynamics of chlorophyll a, although these inputs were not the real driving variable for algal growth. Short-term prediction models that perform one or two weeks ahead predictions of chlorophyll a concentration were designed for the application of Harmful Algal Alert System in Lake Paldang. Short-term-ahead ANN models showed the possibilities of application of Harmful Algal Alert System after increasing ANN model's performance.

Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks

  • Mazloom, Moosa;Tajar, Saeed Farahani;Mahboubi, Farzan
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.401-409
    • /
    • 2020
  • Artificial neural networks are used as a useful tool in distinct fields of civil engineering these days. In order to control long-term quality of Self-Compacting Semi-Lightweight Concrete (SCSLC), the 90 days compressive strength is considered as a key issue in this paper. In fact, combined artificial neural networks are used to predict the compressive strength of SCSLC at 28 and 90 days. These networks are able to re-establish non-linear and complex relationships straightforwardly. In this study, two types of neural networks, including Radial Basis and Multilayer Perceptron, were used. Four groups of concrete mix designs also were made with two water to cement ratios (W/C) of 0.35 and 0.4, as well as 10% of cement weight was replaced with silica fume in half of the mixes, and different amounts of superplasticizer were used. With the help of rheology test and compressive strength results at 7 and 14 days as inputs, the neural networks were used to estimate the 28 and 90 days compressive strengths of above-mentioned mixes. It was necessary to add the 14 days compressive strength in the input layer to gain acceptable results for 90 days compressive strength. Then proper neural networks were prepared for each mix, following which four existing networks were combined, and the combinatorial neural network model properly predicted the compressive strength of different mix designs.

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).