• Title/Summary/Keyword: short term neural network

Search Result 395, Processing Time 0.025 seconds

Development of user activity type and recognition technology using LSTM (LSTM을 이용한 사용자 활동유형 및 인식기술 개발)

  • Kim, Young-kyun;Kim, Won-jong;Lee, Seok-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.360-363
    • /
    • 2018
  • Human activity is influenced by various factors, from individual physical features such as vertebral flexion and pelvic distortion to feelings such as joy, anger, and sadness. However, the nature of these behaviors changes over time, and behavioral characteristics do not change much in the short term. The activity data of a person has a time series characteristic that changes with time and a certain regularity for each action. In this study, we applied LSTM, a kind of cyclic neural network to deal with time - series characteristics, to the technique of recognizing activity type and improved recognition rate of activity type by measuring time and parameter optimization of components of LSTM model.

  • PDF

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

A patent application filing forecasting method based on the bidirectional LSTM (양방향 LSTM기반 시계열 특허 동향 예측 연구)

  • Seungwan, Choi;Kwangsoo, Kim;Sooyeong, Kwak
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.545-552
    • /
    • 2022
  • The number of patent application filing for a specific technology has a good relation with the technology's life cycle and future industry development on that area. So industry and governments are highly interested in forecasting the number of patent application filing in order to take appropriate preparations in advance. In this paper, a new method based on the bidirectional long short-term memory(LSTM), a kind of recurrent neural network(RNN), is proposed to improve the forecasting accuracy compared to related methods. Compared with the Bass model which is one of conventional diffusion modeling methods, the proposed method shows the 16% higher performance with the Korean patent filing data on the five selected technology areas.

Traffic Accident Detection Based on Ego Motion and Object Tracking

  • Kim, Da-Seul;Son, Hyeon-Cheol;Si, Jong-Wook;Kim, Sung-Young
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • In this paper, we propose a new method to detect traffic accidents in video from vehicle-mounted cameras (vehicle black box). We use the distance between vehicles to determine whether an accident has occurred. To calculate the position of each vehicle, we use object detection and tracking method. By the way, in a crowded road environment, it is so difficult to decide an accident has occurred because of parked vehicles at the edge of the road. It is not easy to discriminate against accidents from non-accidents because a moving vehicle and a stopped vehicle are mixed on a regular downtown road. In this paper, we try to increase the accuracy of the vehicle accident detection by using not only the motion of the surrounding vehicle but also ego-motion as the input of the Recurrent Neural Network (RNN). We improved the accuracy of accident detection compared to the previous method.

Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model (LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석)

  • Minsang Kang;Eunkuk Son;Jinjae Lee;Seungjin Kang
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

Prediction Model for Solar Power Generation Using Measured Data (측정 데이터를 이용한 태양광 발전량 예측 모델)

  • Yeongseo Park;Sangmin kang;Juseok Moon;Seongjun Cho;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.102-107
    • /
    • 2024
  • Previous research on solar power generation forecasting has generally relied on meteorological data, leading to lower prediction accuracy. This study, in contrast, uses actual measured power generation data to train various ANN (Artificial Neural Network) models and compares their prediction performance. Additionally, it describes the characteristics and advantages of each ANN model. The paper defines the principles of solar power generation, the characteristics of solar panels, and the model equations, and it also explains the I-V characteristics of solar cells. The results include a comparison between calculated and actual measured power generation, along with an evaluation of the accuracy of power generation predictions using artificial intelligence. The findings confirm that the LSTM (Long Short-Term Memory) model performs better than the MLP (Multi- Layer Perceptron) model in handling time-series data.

  • PDF

Impacts of Seasonal and Interannual Variabilities of Sea Surface Temperature on its Short-term Deep-learning Prediction Model Around the Southern Coast of Korea (한국 남부 해역 SST의 계절 및 경년 변동이 단기 딥러닝 모델의 SST 예측에 미치는 영향)

  • JU, HO-JEONG;CHAE, JEONG-YEOB;LEE, EUN-JOO;KIM, YOUNG-TAEG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.49-70
    • /
    • 2022
  • Sea Surface Temperature (SST), one of the ocean features, has a significant impact on climate, marine ecosystem and human activities. Therefore, SST prediction has been always an important issue. Recently, deep learning has drawn much attentions, since it can predict SST by training past SST patterns. Compared to the numerical simulations, deep learning model is highly efficient, since it can estimate nonlinear relationships between input data. With the recent development of Graphics Processing Unit (GPU) in computer, large amounts of data can be calculated repeatedly and rapidly. In this study, Short-term SST will be predicted through Convolutional Neural Network (CNN)-based U-Net that can handle spatiotemporal data concurrently and overcome the drawbacks of previously existing deep learning-based models. The SST prediction performance depends on the seasonal and interannual SST variabilities around the southern coast of Korea. The predicted SST has a wide range of variance during spring and summer, while it has small range of variance during fall and winter. A wide range of variance also has a significant correlation with the change of the Pacific Decadal Oscillation (PDO) index. These results are found to be affected by the intensity of the seasonal and PDO-related interannual SST fronts and their intensity variations along the southern Korean seas. This study implies that the SST prediction performance using the developed deep learning model can be significantly varied by seasonal and interannual variabilities in SST.

Short-Term Precipitation Forecasting based on Deep Neural Network with Synthetic Weather Radar Data (기상레이더 강수 합성데이터를 활용한 심층신경망 기반 초단기 강수예측 기술 연구)

  • An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.43-45
    • /
    • 2021
  • The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.

  • PDF